Based on previous studies, we know that estrogen can protect the joints from arthritis development by increasing IgG glycosylation and inhibiting osteoclast activation. Phytoestrogens, especially genistein and daidzein, are structurally similar to estradiol that can bind to estrogen receptors (ERs). However, how phytoestrogens affect IgG glycosylation and osteoclast activation in vivo are not investigated so far. In this study, we used 20 mg/kg genistein or daidzein to gavage the female DBA1/J mice in collagen induced arthritis (CIA). We assessed arthritis and bone erosion by clinical scores, histopathology, and micro-CT analysis. Inflammatory cells such as neutrophils, B cells, macrophages and T cells in the peripheral blood were analyzed by flow cytometry. Phagocytic function of peritoneal macrophages was assessed by using FITC-labeled Escherichia coli. New monoclonal antibodies against CII were produced, purified and analyzed. Glycosylation levels of polyclonal and monoclonal IgG were detected by lectin-ELISA. Quantitative PCR was used to analyze the genes related to IgG glycosylation (B4galt1, St6gal1) and osteoclasts (TRAP, NFATC1, c-Fos). Expression of NF-κB and Akt signaling pathways as well as downstream transcription factors NFATc1 and c-Fos was studied by Western blot. Our results show that phytoestrogens protect mice from CIA by increasing IgG glycosylation leading to amelioration of inflammation and inhibiting the NF-κB pathway and NFATc1/c-Fos to decrease the activity of osteoclasts. In conclusion, phytoestrogens can protect bone and joints in CIA mice by increasing IgG glycosylation and inhibiting osteoclast activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2020.106387DOI Listing

Publication Analysis

Top Keywords

igg glycosylation
24
increasing igg
16
phytoestrogens protect
12
osteoclast activation
12
protect joints
8
collagen induced
8
induced arthritis
8
glycosylation inhibiting
8
inhibiting osteoclast
8
genistein daidzein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!