Poly(2-oxazoline)-based magnetic hydrogels: Synthesis, performance and cytotoxicity.

Colloids Surf B Biointerfaces

Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida T. Bati 5678, 760 01 Zlín, Czech Republic; Department of Production Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 760 01 Zlín, Czech Republic.

Published: June 2020

Research on the subject of smart biomaterials has become a cornerstone of tissue engineering and regenerative medicine. Herein, the authors report on developing magnetic hydrogels that combine high biocompatibility and remarkable activity in magnetic fields. We fabricated magnetic hydrogels based on poly(2-ethyl-2-oxazoline) (POx) via living ring-opening cationic polymerization with in-situ embedding of the carbonyl iron (CI) particles. Investigation was made as to the effect exerted by the concentration of CI on magnetic, viscoelastic/magnetorheological properties, the degree of equilibrium swelling, and cytotoxicity. The hydrogels exhibited an open pore structure, as evidenced by computed tomography (CT) imaging. Susceptibility measurements revealed the concentration-dependent field-induced particle restructuration indicating elongation/contraction of the material, thereby determining the potential for magneto-mechanical stimulation of the cells. The POx-based magnetic hydrogels were amphiphilic in character, showing decrease in their capability to hold liquid alongside increase in CI concentration. Viscoelastic measurements suggested that interaction occurred between the particles and matrix based on inconsistency between the experimental storage modulus and the Krieger-Dougherty model. The synthesized materials exhibited excellent biocompatibility toward the 3T3 fibroblast cell line in tests of extract toxicity and direct contact cytotoxicity (ISO standards). The unique combination of properties exhibited by the material - magneto-mechanical activity and biocompatibility - could prove favorable in fields such as biomedicine and biomechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.110912DOI Listing

Publication Analysis

Top Keywords

magnetic hydrogels
16
hydrogels
5
magnetic
5
poly2-oxazoline-based magnetic
4
hydrogels synthesis
4
synthesis performance
4
performance cytotoxicity
4
cytotoxicity subject
4
subject smart
4
smart biomaterials
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!