Prolonged exposure to human induced-stressors can profoundly modify the natural trajectory of ecosystems. Predicting how ecosystems respond under stress requires understanding how physical and biological properties of degraded systems parallel or deviate over time from those of near-natural systems. Utilizing comprehensive forest inventory datasets, we used a paired chronosequence modelling approach to test the effects of long-term channelization and flow regulation of a large river on changes in abiotic conditions and related riparian forest attributes across a range of successional phases. By comparing ecological trajectories between the highly degraded Rhône and the relatively unmodified Drôme rivers, we demonstrated a rapid, strong and likely irreversible divergence in forest succession between the two rivers. The vast majority of metrics measuring life history traits, stand structure, and community composition varied with stand age but diverged significantly between rivers, concurrent with large differences in hydrologic and geomorphic trajectories. Channelization and flow regulation induced a more rapid terrestrialization of the river channel margins along the Rhône River and accelerated change in stand attributes, from pioneer-dominated stands to a mature successional phase dominated by non-native species. Relative to the Drôme, dispersion of trait values was higher in young forest stands along the Rhône, indicating a rapid assembly of functionally different species and an accelerated transition to post-pioneer communities. This study demonstrated that human modifications to the hydro-geomorphic regime have induced acute and sustained changes in environmental conditions, therefore altering the structure and composition of riparian forests. The speed, strength and persistence of the changes suggest that the Rhône River floodplain forests have strongly diverged from natural systems under persistent multiple stressors during the past two centuries. These results reinforce the importance of considering historical changes in environmental conditions to determine ecological trajectories in riparian ecosystems, as has been shown for old fields and other successional contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137730DOI Listing

Publication Analysis

Top Keywords

riparian forest
8
channelization flow
8
flow regulation
8
ecological trajectories
8
rhône river
8
changes environmental
8
environmental conditions
8
forest
5
river
5
divergence riparian
4

Similar Publications

This study delves into the multi-scale temporal and spatial variations of soil heat flux (G) within riparian zones and its correlation with net radiation (Rn) across six riparian woodlands in Shanghai, each characterized by distinct vegetation types. The objective is to assess the complex interrelations between G and Rn, and how these relationships are influenced by varying vegetation and seasons. Over the course of a year, data on G and Rn is collected to investigate their dynamics.

View Article and Find Full Text PDF

Breeding species for resistance to disease in the Iberian Peninsula.

Front Plant Sci

December 2024

Departamento de Ciencias de la Vida, Facultad de Ciencias, Universidad de Alcalá, Madrid, Spain.

Alders are widely distributed riparian trees in Europe, North Africa and Western Asia. Recently, a strong reduction of alder stands has been detected in Europe due to infection by species (Stramenopila kingdom). This infection causes a disease known as alder dieback, characterized by leaf yellowing, dieback of branches, increased fruit production, and bark necrosis in the collar and basal part of the stem.

View Article and Find Full Text PDF

Landscape influences bat suppression of pine processionary moth: Implications for pest management.

J Environ Manage

December 2024

CE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.

Bats provide important ecosystem services, particularly in agriculture, yet integrating bat management into conservation plans remains challenging. Some landscape features considerably influence bat presence, diversity, and ecosystem service provision. Understanding the relationship between landscape structure, composition, pest suppression, and ecosystem services is crucial.

View Article and Find Full Text PDF

In this study, we examined Pacific salmon decline and ecosystem function through Western science and Indigenous, Teslin Tlingit knowledge. We tested relationships of riparian tree growth and nitrogen composition at the limit of Pacific salmon distribution on the Teslin Tlingit Council (TTC) Traditional Territory in Southern Yukon, studied ecosystem roles of salmon and population declines in the area, and the interactions of these processes. Within sites, tree growth was positively related to salmon escapement at all salmon-bearing sites and not at the negative (salmon-free) control site.

View Article and Find Full Text PDF

Community Assembly Mechanisms of in Northwest China and Their Relationship with Environmental Factors.

Plants (Basel)

November 2024

Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China.

is a key community-building species in the desert riparian forests of Northwest China, exhibiting exceptional resistance to stress and playing a vital role in soil and water conservation as well as maintaining ecological balance in arid regions. To investigate the ecological processes underlying the composition of communities and to identify their community construction mechanisms, this study analyses the species diversity and phylogenetic diversity of 58 communities, exploring their assembly processes and key influencing factors. This research aims to elucidate the relationship between community structure from the perspective of species evolution and analyse the construction mechanisms of communities across different clusters in arid environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!