A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Production of a novel dimeric 4-deoxy-L-erythro-5-hexoseulose uronic acid by a PL-17 exolytic alginate lyase from Hydrogenophaga sp. UMI-18. | LitMetric

Production of a novel dimeric 4-deoxy-L-erythro-5-hexoseulose uronic acid by a PL-17 exolytic alginate lyase from Hydrogenophaga sp. UMI-18.

Biochem Biophys Res Commun

Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-0821, Japan. Electronic address:

Published: May 2020

Hydrogenopahaga sp. strain UMI-18 is an alginolytic bacterium that can produce poly(3-hydroxybutylate) (PHB) using alginate as its sole carbon source. Genome analysis indicated that this strain harbors both PHB-synthesizing and alginate-assimilating gene clusters. In the present study, we cloned HyAly-I gene that encodes a PL-17 exolytic alginate lyase and investigated its enzymatic properties using recombinant HyAly-I (recHyAly-I) that was produced by Escherichia coli. The recHyAly-I preferably depolymerized poly(β-D-mannuronate) block of alginate in an exolytic manner at an optimal temperature and a pH at 40 °C and pH 6.0, respectively. It released 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH) from the non-reducing terminus of polymer and oligomer substrates. Interestingly, recHyAly-I was found to produce a novel unsaturated disaccharide, i.e., dimeric DEH (diDEH), along with monomeric DEH. Production of diDEH was prominent in the degradation of trisaccharides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.03.029DOI Listing

Publication Analysis

Top Keywords

4-deoxy-l-erythro-5-hexoseulose uronic
8
uronic acid
8
pl-17 exolytic
8
exolytic alginate
8
alginate lyase
8
production novel
4
novel dimeric
4
dimeric 4-deoxy-l-erythro-5-hexoseulose
4
acid pl-17
4
alginate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!