This is a tutorial-style introduction to the field of molecular polaritons. We describe the basic physical principles and consequences of strong light-matter coupling common to molecular ensembles embedded in UV-visible or infrared cavities. Using a microscopic quantum electrodynamics formulation, we discuss the competition between the collective cooperative dipolar response of a molecular ensemble and local dynamical processes that molecules typically undergo, including chemical reactions. We highlight some of the observable consequences of this competition between local and collective effects in linear transmission spectroscopy, including the formal equivalence between quantum mechanical theory and the classical transfer matrix method, under specific conditions of molecular density and indistinguishability. We also overview recent experimental and theoretical developments on strong and ultrastrong coupling with electronic and vibrational transitions, with a special focus on cavity-modified chemistry and infrared spectroscopy under vibrational strong coupling. We finally suggest several opportunities for further studies that may lead to novel applications in chemical and electromagnetic sensing, energy conversion, optoelectronics, quantum control, and quantum technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5136320 | DOI Listing |
Chem Commun (Camb)
January 2025
Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Hokkaido 001-0020, Japan.
Photochemical reactions enable the synthesis of energetically unfavorable compounds but often require irradiation with ultraviolet light, which potentially induces side reactions. Here, cavity strong coupling enhances the efficiency of an all-solid state photocyclization in crystals of 2,4-dimethoxy-β-nitrostyrene under irradiation with visible light. The exposure to visible light facilitates photocyclization by the transition to a lower polaritonic state, which is energetically lower than the original transition state.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.
Accurate rovibrational molecular models are employed to gain insight in high-resolution into the collective effects and intermolecular processes arising when molecules in the gas phase interact with a resonant infrared (IR) radiation mode. An efficient theoretical approach is detailed, and numerical results are presented for the HCl, H2O, and CH4 molecules confined in an IR cavity. It is shown that by employing a rotationally resolved model for the molecules, revealing the various cavity-mediated interactions between the field-free molecular eigenstates, it is possible to obtain a detailed understanding of the physical processes governing the energy level structure, absorption spectra, and dynamic behavior of the confined systems.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Shiyan Key Laboratory of Quantum Information and Precision Optics, and School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
The molecular energy transfer is crucial for many different physicochemical processes. The efficiency of traditional resonance energy transfer relies on dipole-dipole distance between molecules and becomes negligible when the distance is larger than ∼10 nm, which is difficult to overcome. Cavity polariton, formed when placing molecules inside the cavity, is a promising way to surmount the distance limit.
View Article and Find Full Text PDFJ Chem Phys
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
Vibro-polaritons are hybrid light-matter states that arise from the strong coupling between the molecular vibrational transitions and the photons in an optical cavity. Developing theoretical and computational methods to describe and predict the unique properties of vibro-polaritons is of great significance for guiding the design of new materials and experiments. Here, we present the ab initio cavity Born-Oppenheimer density functional theory (CBO-DFT) and formulate the analytic energy gradient and Hessian as well as the nuclear and photonic derivatives of dipole and polarizability within the framework of CBO-DFT to efficiently calculate the harmonic vibrational frequencies, infrared absorption, and Raman scattering spectra of vibro-polaritons as well as to explore the critical points on the cavity potential energy surface.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Department of Physics, Westlake University, Hangzhou, Zhejiang 310030, China.
Collective strong light-matter coupling provides a versatile means to manipulate physicochemical properties of molecules and materials. Understanding collective polaritonic dynamics is hindered by the macroscopic number of molecules interacting collectively with photonic modes. We develop a many-body theory to investigate the spectroscopy and dynamics of a molecular ensemble embedded in an optical cavity in the collective strong coupling regime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!