Temporal physicochemical changes and transformation of biochar in a rice paddy: Insights from a 9-year field experiment.

Sci Total Environ

Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China. Electronic address:

Published: June 2020

Biochar application to soil has attracted extensive attention worldwide due to its carbon (C) sequestration and fertility-enhancing properties. However, the lack of biochar accumulation in highly disturbed agroecosystems challenges the perceived long-term stability of biochars in soil. This 9-year field experiment was conducted in rice paddy fields to understand the temporal degradation of biochars produced from two contrasting feedstocks (rice straw vs. bamboo) at a high temperature (600 °C). Obvious physical alterations, surface oxidation, and transformation of condensed aromatic C occurred in biochars in the disturbed paddy field with frequent redox cycles. Increase in O/C atomic ratio, levels of high-temperature-sensitive degradable components, H/C ratio, and linear alkyl-C content were observed, which were indicative of time-dependent molecular changes and degradative transformation of biochars. Biochar degradation was characterized by the loss of labile C at an early stage and the degradation of aromatic C at a later stage. Based on the massive loss of C content in biochars (10.3-11.8%) and considerable degradation of aromatic C (5.0-8.7%) in 9 years, we argue that current biphasic C dynamic models probably overestimate the stability of biochars in agroecosystems such as rice paddy fields. Long-term field experiments (>5 years) are required to assess biochar's potential for C sequestration. This study provides long-term field data regarding the temporal changes in biochar physicochemical properties, which may facilitate the development of a robust assessment scheme on the long-term persistence of biochars in agroecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137670DOI Listing

Publication Analysis

Top Keywords

rice paddy
12
9-year field
8
field experiment
8
stability biochars
8
paddy fields
8
degradation aromatic
8
biochars agroecosystems
8
long-term field
8
biochars
7
biochar
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!