The occurrence, partition, and human health risk of thirteen pharmaceuticals and personal care products (PPCPs) have been investigated in surface water, overlying water, pore water and sediment samples from Dianshan Lake of Yangtze River Delta Ecology and Greenery Integration Development Demonstration Zone in China. PPCPs were ubiquitous in aqueous phase and sediments from Dianshan Lake. Sulfamethazine (SMZ) was dominated in surface water and overlying water, while ketoprofen (KPF) was rich in sediment. The total concentration of PPCPs ranged from 0.38-85.27 ng/L, 24.26-130.03 ng/L and 5.39-149.84 μg/kg in surface water, overlying water and sediment, respectively, which were in middle levels compared with these reported in other aquatic environment in China. Naproxen (NPX), sulfadimethoxine (SDM), sulfamethoxazole (SMX) and sulfamethazine (SMZ) in surface water showed a relatively higher level in lake side than those in lake center suggesting that a mixed containment source of human- and animal-derived from the areas around lake. The significant season variations of most PPCPs were mainly attributed to their usage, water temperature and dilution effect. The partition behaviors of PPCPs in sediment-overlying water and sediment-pore water system were mainly affected by their logK values, and showed weak correlation with total organic carbon (TOC) content in sediment and molecular weights of PPCPs. Preliminary results indicated that PPCPs in Dianshan Lake have not posed a high risk to human health by exposure to drinking water for all age groups. Nevertheless, their potential to cause the mixture toxicity and resistance genes cannot be neglected. This work will contribute to the clear picture of PPCPs contamination in drinking water source in the Demonstration Zone, and provide reliable and simple-to-use information to regulators on the exposure and risk levels of PPCPs, as well as recommendations for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.137624 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.
Bubbles present in saline water typically exhibit a prolonged lifetime, making them attractive for various engineering processes. Herein, we unveil a transition from delayed bubble coalescence to rapid bursting within about one millisecond in salty solutions. The key aspect in understanding this transition lies in the combined influences of surface deformation and ion surface excess instead of characterizing the ions alone.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Advanced Chemical Power Sources (Chongqing University), Chongqing 400044, China.
Investigating how the size of carbon support pores influences the three-phase interface of platinum (Pt) particles in fuel cells is essential for enhancing catalyst utilization. This study employed molecular dynamics simulations and density functional theory calculation to examine the effects of mesoporous carbon support size, specifically its pore diameter, on Nafion ionomer distribution, as well as on proton and gas/liquid transport channels, and the utilization of Pt active sites. The findings show that when Pt particles are located within the pores of carbon support (Pt/PC), there is a significant enhancement in the spatial distribution of Nafion ionomer, along with a reduction in encapsulation around the Pt particles, compared to when Pt particles are positioned on the surface or in excessively large pores of the carbon support.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States.
Intensification of wastewater treatment residual (i.e., biosolid) applications to watersheds can alter the amount and composition of organic matter (OM) mobilized into waterways.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
We employed machine learning (ML) techniques combined with potential-dependent photoelectrochemical impedance spectroscopy (pot-PEIS) to gain deeper insights into the charge transport mechanisms of hematite (α-FeO) photoanodes. By the Shapley Additive exPlanations (SHAP) analysis from the ML model constructed from a small data set (dozens of samples) of electrical parameters obtained from pot-PEIS and the PEC performance, we identified the dominant factors influencing the electron transport to the back contact in the bulk and hole transfer to a solution at the hematite/electrolyte interface. The results revealed that shallow defect states significantly enhance electron transport, while deep defect states impede it, and also one of the surface states enhances the hole transfer to the electrolyte solution.
View Article and Find Full Text PDFLangmuir
January 2025
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!