Alginate hydrogels are cross-linked polymers with high water content, tuneable chemical and material properties, and a range of biomedical applications including drug delivery, tissue engineering, and cell therapy. However, their similarity to soft tissue often renders them undetectable within the body using conventional bio-medical imaging techniques. This leaves much unknown about their behaviour in vivo, posing a challenge to therapy development and validation. To address this, we report a novel, fast, and simple method of incorporating the nuclear imaging radio-metal In into the structure of alginate hydrogels by utilising its previously-undescribed capacity as an ionic cross-linking agent. This enabled non-invasive in vivo nuclear imaging of hydrogel delivery and retention across the whole body, over time, and across a range of model therapies including: nasal and oral drug delivery, stem cell transplantation, and cardiac tissue engineering. This information will facilitate the development of novel therapeutic hydrogel formulations, encompassing alginate, across disease categories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7103761 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2020.119930 | DOI Listing |
J Mech Behav Biomed Mater
December 2024
Institute of Continuum Mechanics and Biomechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 90762 Fürth, Germany. Electronic address:
Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.
Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
This study introduced a hydrogel dressing, termed SODex-gel, which was constructed by establishing Schiff base and hydrogen bonds with the precursors of oxidized dextran (ODex) and succinic dihydrazide (SD)-modified sodium alginate (SD--SA). Through comprehensive and studies, the adhesive properties, self-healing capabilities, hemostatic potential, and wound healing efficacy of the SODex-gel dressing were meticulously evaluated. The H NMR, FTIR, and TGA analyses confirmed the fabrication of the SODex-gel dressing and its constituent elements.
View Article and Find Full Text PDFSci Rep
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
Chemosphere
January 2025
School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea. Electronic address:
In the field of solar steam generation, hydrogels with interfacial evaporation configurations stand as a promising candidate for solar evaporators. Hydrogel-based photothermal materials provide excellent hydration channels for supplying water to an evaporative layer due to their porous structure and hydrophilic nature. This work proposed a facile and in-situ fabrication of sodium alginate hydrogel incorporated with cellulose nanocrystals and polypyrrole as an effective photothermal material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!