Esculetin, a coumarin derivative from various natural plants, has an anti-inflammatory property. In the present study, we examined if esculetin has any salutary effects against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Acute lung injury (ALI) was induced via the intratracheal administration of LPS, and esculetin (20 and 40 mg/kg) was given intraperitoneally 30 min before LPS challenge. After 6 h of LPS administration, lung tissues were collected for analysis. Pretreatment with esculetin significantly attenuated histopathological changes, inflammatory cell infiltration, and production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, in the lung tissue. Furthermore, esculetin inhibited the protein kinase B (AKT), extracellular signal-regulated kinase (ERK), and nuclear factor-kappa B (NF-κB) pathways and downregulated the expression of RORγt and IL-17 in LPS-induced ALI. Our results indicated that esculetin possesses anti-inflammatory and protective effects against LPS-induced ALI via inhibition of the AKT/ERK/NF-κB and RORγt/IL-17 pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-020-01182-4DOI Listing

Publication Analysis

Top Keywords

acute lung
12
lung injury
12
akt/erk/nf-κb rorγt/il-17
8
rorγt/il-17 pathways
8
injury ali
8
lps-induced ali
8
esculetin
7
lung
5
esculetin ameliorates
4
ameliorates lipopolysaccharide-induced
4

Similar Publications

This study aimed to investigate the potential protective properties of a traditional Chinese medicine (TCM) herbal product, Siraitia grosvenorii granules (SGG) against PM2.5-induced lung injury, as well as their active constituents and underlying mechanisms. The chemical composition of SGG, such as wogonin (MOL000173), luteolin (MOL000006), nobiletin (MOL005828), naringenin (MOL004328), acacetin (MOL001689), were identified via ultra-high-performance liquid chromatography-Q Exactive (UHPLC-QE) Orbitrap/MS.

View Article and Find Full Text PDF

Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) is a disordered pulmonary disease characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen and diffuse alveolar infiltrates. Despite increased research into ALI, current clinical treatments lack effectiveness. Tetramethylpyrazine (TMP) has shown potential in ALI treatment, and understanding its effects on the pulmonary microenvironment and its underlying mechanisms is imperative.

View Article and Find Full Text PDF

Aspiration pneumonia is a serious problem in the elderly due to weakened swallowing reflexes or underlying gastroesophageal reflux disease (GERD). This can lead to acute respiratory distress syndrome (ARDS), which can become life-threatening, sometimes requiring extra corporeal membrane oxygenation (ECMO) support. Lung transplantation is a possible therapeutic option for patients with no signs of lung recovery despite prolonged ECMO support.

View Article and Find Full Text PDF

The respiratory impact of e-cigarette usage, also known as vaping, emerged as a significant healthcare issue in 2019. This concern arose due to the sharp rise in cases of e-cigarette or vaping-associated lung injury (EVALI) among adolescents and young adults. Now, systemic manifestations have been described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!