New proposal of nitrogen metabolism regulation by small RNAs in the extreme halophilic archaeon Haloferax mediterranei.

Mol Genet Genomics

Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.

Published: May 2020

The regulatory networks involved in the uptake and metabolism of different nitrogen sources in response to their availability are crucial in all organisms. Nitrogen metabolism pathways have been studied in detail in archaea such as the extreme halophilic archaeon Haloferax mediterranei. However, knowledge about nitrogen metabolism regulation in haloarchaea is very scarce, and no transcriptional regulators involved in nitrogen metabolism have been identified to date. Advances in the molecular biology field have revealed that many small RNAs (sRNAs) are involved in the regulation of a diverse metabolic pathways. Surprisingly, no studies on regulation mediated by sRNAs have focused on the response to environmental fluctuations in nitrogen in haloarchaea. To identify sRNAs involved in the transcriptional regulation of nitrogen assimilation genes in Haloferax mediterranei and, thus, propose a novel regulatory mechanism, RNA-Seq was performed using cells grown in the presence of two different nitrogen sources. The differential transcriptional expression analysis of the RNA-Seq data revealed differences in the transcription patterns of 102 sRNAs according to the nitrogen source, and the molecular functions, cellular locations and biological processes with which the target genes were associated were predicted. These results enabled the identification of four sRNAs that could be directly related to the regulation of genes involved in nitrogen metabolism. This work provides the first proposed regulatory mechanism of nitrogen assimilation-related gene expression by sRNAs in haloarchaea as an alternative to transcriptional regulation mediated by proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-020-01659-9DOI Listing

Publication Analysis

Top Keywords

nitrogen metabolism
20
haloferax mediterranei
12
nitrogen
10
metabolism regulation
8
small rnas
8
extreme halophilic
8
halophilic archaeon
8
archaeon haloferax
8
nitrogen sources
8
involved nitrogen
8

Similar Publications

Divergent responses of plant multi-element coupling to nitrogen and phosphorus addition in a meadow steppe.

BMC Plant Biol

January 2025

Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.

The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.

View Article and Find Full Text PDF

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

MarR family regulator LcbR2 activates lincomycin biosynthesis in multiple ways.

Int J Biol Macromol

January 2025

Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.

Lincomycin, produced by the actinomycete Streptomyces lincolnensis, is highly effective against Gram-positive bacteria and protozoans, making it widely used in clinical settings. This study identified LcbR2, a MarR family transcriptional regulator, as an activator of lincomycin biosynthesis. Knocking out the lcbR2 gene reduced lincomycin production by 63.

View Article and Find Full Text PDF

Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.

View Article and Find Full Text PDF

Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!