Interactions between stressors are involved in the decline of wild species and losses of managed ones. Those interactions are often assumed to be synergistic, and per se of the same nature, even though susceptibility can vary within a single species. However, empirical measures of interaction effects across levels of susceptibility remain scarce. Here, we show clear evidence for extreme differences in stressor interactions ranging from antagonism to synergism within honeybees, Apis mellifera. While female honeybee workers exposed to both malnutrition and the pathogen Nosema ceranae showed synergistic interactions and increased stress, male drones showed antagonistic interactions and decreased stress. Most likely sex and division of labour in the social insects underlie these findings. It appears inevitable to empirically test the actual nature of stressor interactions across a range of susceptibility factors within a single species, before drawing general conclusions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069998 | PMC |
http://dx.doi.org/10.1038/s41598-020-61371-x | DOI Listing |
Learn Mem
January 2025
Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA
Agency beliefs influence how humans learn from different contexts and outcomes. Research demonstrates that stressors, such as exposure to early-life adversity (ELA), are associated with both agency beliefs and learning, but how these processes interact remains unclear. The current study investigated whether exposure to ELA influences agency and interacts with reinforcement learning in adults.
View Article and Find Full Text PDFEnviron Res
January 2025
Key laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China. Electronic address:
Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
Phytoplankton are diverse photosynthetic organisms in estuarine ecosystems and sensitive indicators of environmental changes. This study employed Generalized Additive Model (GAM) to explore the impact of environmental variables on the abundance of six dominant phytoplankton species in the tropical Karanja estuary, India. Data were collected from five sampling stations between January 2022 and March 2023.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
The concurrent environmental challenges of invasive species and soil microplastic contamination increasingly affect agricultural ecosystems, yet their combined effects remain underexplored. This study investigates the interactive impact of the legacy effects of Canada goldenrod ( L.) invasion and soil microplastic contamination on wheat ( L.
View Article and Find Full Text PDFLife (Basel)
January 2025
Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania.
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!