A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative time-course transcriptome analysis in contrasting Carex rigescens genotypes in response to high environmental salinity. | LitMetric

Soil salinization is one of most crucial environmental problems around the world and negatively affects plant growth and production. Carex rigescens is a turfgrass with favorable stress tolerance and great application prospect in salinity soil remediation and utilization; however, the molecular mechanisms behind its salt stress response are unknown. We performed a time-course transcriptome analysis between salt tolerant 'Huanghua' (HH) and salt sensitive 'Beijing' (BJ) genotypes. Physiological changes within 24 h were observed, with the HH genotype exhibiting increased salt tolerance compared to BJ. 5764 and 10752 differentially expressed genes were approved by transcriptome in BJ and HH genotype, respectively, and dynamic analysis showed a discrepant profile between two genotypes. In the BJ genotype, genes related to carbohydrate metabolism and stress response were more active and ABA signal transduction pathway might play a more important role in salt stress tolerance than in HH genotype. In the HH genotype, unique increases in the regulatory network of transcription factors, hormone signal transduction, and oxidation-reduction processes were observed. Moreover, trehalose and pectin biosynthesis and chitin catabolic related genes were specifically involved in the HH genotype, which may have contributed to salt tolerance. Moreover, some candidate genes like mannan endo-1,4-beta-mannosidase and EG45-like domain-containing protein are highlighted for future research about salt stress resistance in C. rigescens and other plant species. Our study revealed unique salt adaptation and resistance characteristics of two C. rigescens genotypes and these findings could help to enrich the currently available knowledge and clarify the detailed salt stress regulatory mechanisms in C. rigescens and other plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110435DOI Listing

Publication Analysis

Top Keywords

salt stress
16
salt
9
time-course transcriptome
8
transcriptome analysis
8
carex rigescens
8
rigescens genotypes
8
salinity soil
8
stress tolerance
8
stress response
8
salt tolerance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!