Cutting Pose Prediction from Point Clouds.

Sensors (Basel)

Media Technology, Aalborg University, Aalborg 9000, Denmark.

Published: March 2020

The challenge of getting machines to understand and interact with natural objects is encountered in important areas such as medicine, agriculture, and, in our case, slaughterhouse automation. Recent breakthroughs have enabled the application of Deep Neural Networks (DNN) directly to point clouds, an efficient and natural representation of 3D objects. The potential of these methods has mostly been demonstrated for classification and segmentation tasks involving rigid man-made objects. We present a method, based on the successful PointNet architecture, for learning to regress correct tool placement from human demonstrations, using virtual reality. Our method is applied to a challenging slaughterhouse cutting task, which requires an understanding of the local geometry including the shape, size, and orientation. We propose an intermediate five-Degree of Freedom (DoF) cutting plane representation, a point and a normal vector, which eases the demonstration and learning process. A live experiment is conducted in order to unveil issues and begin to understand the required accuracy. Eleven cuts are rated by an expert, with 8 / 11 being rated as acceptable. The error on the test set is subsequently reduced through the addition of more training data and improvements to the DNN. The result is a reduction in the average translation from 1.5 cm to 0.8 cm and the orientation error from 4 . 59 to 4 . 48 . The method's generalization capacity is assessed on a similar task from the slaughterhouse and on the very different public LINEMOD dataset for object pose estimation across view points. In both cases, the method shows promising results. Code, datasets, and supplementary materials are available at https://github.com/markpp/PoseFromPointClouds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146437PMC
http://dx.doi.org/10.3390/s20061563DOI Listing

Publication Analysis

Top Keywords

point clouds
8
cutting pose
4
pose prediction
4
prediction point
4
clouds challenge
4
challenge machines
4
machines understand
4
understand interact
4
interact natural
4
natural objects
4

Similar Publications

With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered.

View Article and Find Full Text PDF

Formation of water-in-water emulsions and microgels in nonionic surfactant + gelatin aqueous mixtures.

J Colloid Interface Sci

January 2025

Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain. Electronic address:

Article Synopsis
  • The study proposes that water-in-water (W/W) emulsions can be created by mixing a polymer and a surfactant, leading to phase segregation when the surfactant's cloud temperature is lowered.
  • Experiments involved using an ethoxylated triglyceride surfactant (Kolliphor ELP) with gelatin, where the gelatin reduced the surfactant's cloud temperature, allowing for two distinct aqueous phases to form.
  • The findings reveal that this is the first documented case of W/W emulsions formed with a polymer-surfactant mixture, achieving stability through chemically crosslinked microgels and the incorporation of mucin particles.
View Article and Find Full Text PDF

Accurate 6D object pose estimation is critical for autonomous docking. To address the inefficiencies and inaccuracies associated with maximal cliques-based pose estimation methods, we propose a fast 6D pose estimation algorithm that integrates feature space and space compatibility constraints. The algorithm reduces the graph size by employing Laplacian filtering to resample high-frequency signal nodes.

View Article and Find Full Text PDF

Drones are extensively utilized in both military and social development processes. Eliminating the reliance of drone positioning systems on GNSS and enhancing the accuracy of the positioning systems is of significant research value. This paper presents a novel approach that employs a real-scene 3D model and image point cloud reconstruction technology for the autonomous positioning of drones and attains high positioning accuracy.

View Article and Find Full Text PDF

Roadside tree segmentation and parameter extraction play an essential role in completing the virtual simulation of road scenes. Point cloud data of roadside trees collected by LiDAR provide important data support for achieving assisted autonomous driving. Due to the interference from trees and other ground objects in street scenes caused by mobile laser scanning, there may be a small number of missing points in the roadside tree point cloud, which makes it familiar for under-segmentation and over-segmentation phenomena to occur in the roadside tree segmentation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!