Caffeine's ergogenic effects on exercise performance are generally explained by its ability to bind to adenosine receptors. is the gene that encodes A subtypes of adenosine receptors. It has been suggested that gene polymorphisms may be responsible for the inter-individual variations in the effects of caffeine on exercise performance. In the only study that explored the influence of variation in -in this case, a common polymorphism (rs5751876)-on the ergogenic effects of caffeine on exercise performance, C allele carriers were identified as "non-responders" to caffeine. To explore if C allele carriers are true "non-responders" to the ergogenic effects of caffeine, in this randomized, double-blind study, we examined the acute effects of caffeine ingestion among a sample consisting exclusively of C allele carriers. Twenty resistance-trained men identified as C allele carriers (CC/CT genotype) were tested on two occasions, following the ingestion of caffeine (3 mg/kg) and a placebo. Exercise performance was evaluated with movement velocity, power output, and muscle endurance during the bench press exercise, countermovement jump height, and power output during a Wingate test. Out of the 25 analyzed variables, caffeine was ergogenic in 21 (effect size range: 0.14 to 0.96). In conclusion, (rs5751876) C allele carriers exhibited ergogenic responses to caffeine ingestion, with the magnitude of improvements similar to what was previously reported in the literature among samples that were not genotype-specific. Therefore, individuals with the CT/CC genotype may still consider supplementing with caffeine for acute improvements in performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7146260 | PMC |
http://dx.doi.org/10.3390/nu12030741 | DOI Listing |
Medicine (Baltimore)
January 2025
The Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China.
Rationale: Gitelman syndrome (GS) is a rare hereditary electrolyte disorder caused by mutations in the SLC12A3 gene. There is limited literature on the role of hydrochlorothiazide (HCT) testing and the SLC12A3 single heterozygous mutation in the diagnosis and management of patients with GS. In addition, cases of GS with concomitant kidney stones are rare.
View Article and Find Full Text PDFEquine Vet J
January 2025
UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
Background: Equine recurrent laryngeal neuropathy (RLN) is an economically important upper respiratory tract (URT) disease with a genetic contribution to risk, but genetic variants independent of height have not been identified for Thoroughbreds. The method of clinical assessment for RLN is critical to accurately phenotype groups for genetic studies.
Objectives: To identify genetic risk loci for RLN in Thoroughbreds in a genome-wide association study (GWAS) following high-resolution phenotyping.
J Pediatr Urol
December 2024
Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt. Electronic address:
Backgrounds: The pathophysiology of nephrolithiasis is complex, influenced by both environmental and genetic factors. Calcium is the most prevalent metabolite present in the stone matrix. Stimulating the basolateral calcium sensing receptor (CASR) in the renal tubules leads to an increase in claudin-14 expression, reducing paracellular calcium permeability and increasing urinary Ca excretion.
View Article and Find Full Text PDFJ Neurosci
January 2025
German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
The precuneus is a site of early amyloid-beta (Aβ) accumulation. Previous cross-sectional studies reported increased precuneus fMRI activity in older adults with mild cognitive deficits or elevated Aβ. However, longitudinal studies in early Alzheimer's disease (AD) are lacking and the relationship to the Apolipoprotein-E () genotype is unclear.
View Article and Find Full Text PDFJ Med Genet
January 2025
Univ Rouen Normandie, Inserm U1245, Normandie Univ, CHU Rouen, Department of Genetics, F-76000, Rouen, France
Background: Li-Fraumeni syndrome (LFS) predisposes individuals to a wide range of cancers from childhood onwards, underscoring the crucial need for accurate interpretation of germline variants for optimal clinical management of patients and families. Several unclassified variants, particularly those potentially affecting splicing, require specialised testing. One such example is the NM_000546.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!