The Role of Selected Bioactive Compounds in the Prevention of Alzheimer's Disease.

Antioxidants (Basel)

Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland.

Published: March 2020

Neurodegeneration is a feature of many debilitating, incurable age-dependent diseases that affect the nervous system and represent a major threat to the health of elderly persons. Because of the ongoing process of aging experienced by modern societies, the increasing prevalence of neurodegenerative diseases is becoming a global public health concern. A major cause of age-related dementia is Alzheimer's disease (AD). Currently, there are no effective therapies to slow, stop, or reverse the progression of this disease. However, many studies have suggested that modification of lifestyle factors, such as the introduction of an appropriate diet, can delay or prevent the onset of this disorder. Diet is currently considered to be a crucial factor in controlling health and protecting oneself against oxidative stress and chronic inflammation, and thus against chronic degenerative diseases. A large number of bioactive food compounds may influence the pathological mechanisms underlying AD. Among them, phenolic compounds, omega-3 fatty acids, fat-soluble vitamins, isothiocyanates, and carotenoids seem to be promising. They act not only as antioxidant and anti-inflammatory agents, but also as active modulators of the pathological molecular mechanisms that play a role in AD development, including the formation of amyloid plaques and tau tangles, the main hallmarks of AD pathology. In vivo animal model studies as well as clinical and epidemiological research suggest that nutritional intervention has a positive effect on the health of older people and may prevent age-related cognitive decline, especially when the diet contains more than one bioactive nutrient. The Mediterranean diet and in particular its combination with Dietary Approaches to Stop Hypertension, which is called the MIND diet, are nutritional patterns based on many products rich in bioactive compounds that appear to be the most effective in preventing neurodegeneration. The present review gathers evidence that supports the neuroprotective effect of bioactive substances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139322PMC
http://dx.doi.org/10.3390/antiox9030229DOI Listing

Publication Analysis

Top Keywords

bioactive compounds
8
alzheimer's disease
8
bioactive
5
diet
5
role selected
4
selected bioactive
4
compounds
4
compounds prevention
4
prevention alzheimer's
4
disease neurodegeneration
4

Similar Publications

Isolation of Natural Products Using Preparative TLC.

Methods Mol Biol

January 2025

Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea.

Known for their diverse and potent physiological activities, natural products continue to be essential for the discovery and development of new drugs. This chapter explores the pivotal role of preparative thin-layer chromatography (Prep-TLC) in the isolation of natural products. This chapter begins with an understanding of the historical significance and structural complexity of natural products, and discusses the problems caused by complex mixtures present in extracts, as well as the multifunctionality, cost-effectiveness, and compatibility with different sample types of Prep-TLC to address these challenges.

View Article and Find Full Text PDF

This chapter presents a comprehensive approach to profiling plant-derived primary metabolites using metabolomics, highlighting its critical role in decoding the biosynthesis of bioactive plant compounds. It details the utilization of gas chromatography-mass spectrometry (GC-MS) for the effective analysis and profiling of these metabolites. The process, encompassing extraction methods, chemical derivatization, and data processing, is thoroughly outlined.

View Article and Find Full Text PDF

Natural products, particularly plants, remain a vital source of bioactive compounds owing to their unparalleled metabolic diversity across pharmaceuticals, cosmetics, foods, and agriculture. However, this diversity, encompassing not only a multitude of compounds but also their varying chemical and physical properties, presents a challenge in their effective utilization. Targeted analysis of specific metabolites, as well as untargeted approaches covering a wide metabolite range, necessitate optimal extraction solvents tailored to meet diverse requirements.

View Article and Find Full Text PDF

Genome-wide identification of carboxyesterase family members reveals the function of GeCXE9 in the catabolism of parishin A in Gastrodia elata.

Plant Cell Rep

January 2025

Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.

GeCXE9 can catalyze the hydrolysis of parishin A via two pathways during the medicinal processing of Gastrodia elata. Gastrodia elata Bl. is used in traditional Chinese medicine for its bioactive compounds, particularly phenols.

View Article and Find Full Text PDF

Stroke is a serious life-threatening medical condition. Understanding the underlying molecular mechanisms of this condition is crucial to identifying novel therapeutic targets that can improve patient outcomes. Autophagy is an essential mechanism for the destruction of damaged intracellular components that maintains homeostasis in physiological or pathological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!