We prepared cellulose nanofibrils-based (CNF), alginate-based and single-walled carbon nanotubes (SWCNT)-based inks for freeform reversible embedding hydrogel (FRESH) 3D bioprinting of conductive scaffolds. The 3D printability of conductive inks was evaluated in terms of their rheological properties. The differentiation of human neuroblastoma cells (SH-SY5Y cell line) was visualized by the confocal microscopy and the scanning electron microscopy techniques. The expression of TUBB3 and Nestin genes was monitored by the RT-qPCR technique. We have demonstrated that the conductive guidelines promote the cell differentiation, regardless of using differentiation factors. It was also shown that the electrical conductivity of the 3D printed scaffolds could be tuned by calcium-induced crosslinking of alginate, and this plays a significant role on neural cell differentiation. Our work provides a protocol for the generation of a realistic in vitro 3D neural model and allows for a better understanding of the pathological mechanisms of neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140699PMC
http://dx.doi.org/10.3390/cells9030682DOI Listing

Publication Analysis

Top Keywords

differentiation human
8
human neuroblastoma
8
neuroblastoma cells
8
cell differentiation
8
differentiation
5
printed conductive
4
conductive nanocellulose
4
nanocellulose scaffolds
4
scaffolds differentiation
4
cells prepared
4

Similar Publications

The periodontal ligament (PDL) is a connective tissue, and PDL cells have a potential to differentiate into cementoblasts, osteoblasts, and gingival fibroblasts. This study investigated whether transcription factor c-Myb could induce differentiation of PDL cells for periodontal regeneration. PDL cells were isolated from extracted teeth and cultured.

View Article and Find Full Text PDF

The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.

View Article and Find Full Text PDF

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

Background: Bone-invasive Pituitary Neuroendocrine Tumors (BI PitNETs) epitomize an aggressive subtype of pituitary tumors characterized by bone invasion, culminating in extensive skull base bone destruction and fragmentation. This infiltration poses a significant surgical risk due to potential damage to vital nerves and arteries. However, the mechanisms underlying bone invasion caused by PitNETs remain elusive, and effective interventions for PitNET-induced bone invasion are lacking in clinical practice.

View Article and Find Full Text PDF

miR-208a-3p discriminates osteoporosis, predicts fracture, and regulates osteoclast activation through targeting STC1.

J Orthop Surg Res

January 2025

Department of Rehabilitation, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2nd Road, Baise, 533000, Guangxi Zhuang Autonomous Region, China.

Background: Osteoporosis (OP) frequently occurs in post-menopausal women, increasing the risk of fracture. Early screening OP could improve the prevention of fractures.This study focused on the significance of miR-208a-3p in diagnosing OP and development regulation, aiming to explore a novel biomarker and therapeutic target for OP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!