Third-order transport coefficient tensor of charged-particle swarms in neutral gases in the presence of spatially uniform electric and magnetic fields is considered using a multiterm solution of Boltzmann's equation and Monte Carlo simulation technique. The structure of the third-order transport coefficient tensor and symmetries along its individual components in varying configurations of electric and magnetic fields are addressed using a group projector technique and through symmetry considerations of the Boltzmann equation. In addition, we focus upon the physical interpretation of the third-order transport coefficient tensor by considering the extended diffusion equation which incorporates the contribution of the third-order transport coefficients to the density profile of charged particles. Numerical calculations are carried out for electron and ion swarms for a range of model gases with the aim of establishing accurate benchmarks for third-order transport coefficients. The effects of ion to neutral-particle mass ratio are also examined. The errors of the two-term approximation for solving the Boltzmann equation and limitations of previous treatments of the high-order charged-particle transport properties are also highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.101.023203DOI Listing

Publication Analysis

Top Keywords

third-order transport
24
transport coefficient
16
coefficient tensor
16
electric magnetic
12
magnetic fields
12
tensor charged-particle
8
charged-particle swarms
8
boltzmann equation
8
transport coefficients
8
third-order
6

Similar Publications

Synergistic Nonreciprocity of Linear and Nonlinear Optical Diffraction.

Phys Rev Lett

November 2024

School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China.

Linear optical diffraction of light is a basic natural phenomenon subject to a long history study and it obeys the well-known reciprocity in transport. In this work we report observation of synergistic nonreciprocal linear and nonlinear diffraction of a Ti:sapphire femtosecond laser beam against a periodic poled lithium niobate (PPLN) thin plate nonlinear grating with a front surface corrugated with a shallow grating of a depth only 67 nm and a smooth back surface. A high peak power pump laser beam shining upon the geometrically asymmetric nonlinear grating from either the front surface and back surface will both cause significant second-order nonlinear (2nd-NL) Raman-Nath diffraction and Cerenkov radiation, in addition to apparent linear optical diffraction and modest third-order nonlinear (3rd-NL) spectral broadening.

View Article and Find Full Text PDF

This study employed advanced spectroscopic techniques to investigate the structural and optical properties of chitosan (CS) biopolymer films modified with natural dyes from Cosmos Sulphureus Cav. (CSC) flowers. FTIR results indicated that the inclusion of CSC dyes led to broader absorbance and decreased transmittance.

View Article and Find Full Text PDF

Nonlinear transport phenomena in condensed matter reflect the geometric nature, quantum coherence, and many-body correlation of electronic states. Electric currents in solids are classified into (i) ohmic current, (ii) supercurrent, and (iii) geometric or topological current. While the nonlinear current-voltage (-) characteristics of the former two categories have been extensive research topics recently, those of the last category remains unexplored.

View Article and Find Full Text PDF

Quantum Geometry Induced Nonlinear Transport in Altermagnets.

Phys Rev Lett

September 2024

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA.

Article Synopsis
  • * The study differentiates contributions to this response, highlighting that longitudinal responses mainly arise from quantum metric quadrupole (QMQ), while transverse responses involve both QMQ and Berry curvature quadrupole (BCQ), with the Hall response for d-wave altermagnets being primarily influenced by BCQ.
  • * Additionally, the results indicate that crystalline anisotropy and spin-orbit coupling (SOC) significantly affect the response, with SOC leading to sharper peaks in the response and changes
View Article and Find Full Text PDF

Styrene monomer as potential material for design of new optoelectronic and nonlinear optical polymers: density functional theory study.

R Soc Open Sci

July 2024

Mechanic Materials and Complex Structures Laboratory, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.

Using density functional theory, we have studied the intrinsic properties of styrene. First, we determine the optimized structures, structural parameters and thermodynamic properties to make our simulations more realistic to experimental results and check the stability. Second, we investigate optoelectronic, electronic and global descriptors, transport properties of holes and electrons, natural bond orbital analysis, absorption and fluorescence properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!