Theory of acoustic trapping of microparticles in capillary tubes.

Phys Rev E

Department of Physics, Technical University of Denmark, and DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark.

Published: February 2020

We present a semianalytical theory for the acoustic fields and particle-trapping forces in a viscous fluid inside a capillary tube with arbitrary cross section and ultrasound actuation at the walls. We find that the acoustic fields vary axially on a length scale proportional to the square root of the quality factor of the two-dimensional (2D) cross-section resonance mode. This axial variation is determined analytically based on the numerical solution to the eigenvalue problem in the 2D cross section. The analysis is developed in two steps: First, we generalize a recently published expression for the 2D standing-wave resonance modes in a rectangular cross section to arbitrary shapes, including the viscous boundary layer. Second, based on these 2D modes, we derive analytical expressions in three dimensions for the acoustic pressure, the acoustic radiation and trapping force, as well as the acoustic energy flux density. We validate the theory by comparison to three-dimensional numerical simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.101.023107DOI Listing

Publication Analysis

Top Keywords

theory acoustic
8
acoustic fields
8
acoustic
5
acoustic trapping
4
trapping microparticles
4
microparticles capillary
4
capillary tubes
4
tubes semianalytical
4
semianalytical theory
4
fields particle-trapping
4

Similar Publications

Purpose: This study investigates how Mandarin-English bilingual students in Canada produce Mandarin tones and how this is influenced by factors such as tone complexity, cross-linguistic influences, and speech input.

Method: Participants were 82 students enrolled in a Chinese bilingual program in Western Canada. Students were recruited from Grades 1, 3, and 5 and divided into two groups based on their home language backgrounds: The heritage language group had early and strong input in Mandarin, and the second language (L2) group received mostly English input at home.

View Article and Find Full Text PDF

Influence of Periodically Varying Slit Widths on Sound Absorption by a Slit Pore Medium.

Materials (Basel)

December 2024

School of Engineering and Innovation, The Open University, Milton Keynes MK7 6AA, UK.

A simple pore microstructure of parallel, identical, and inclined smooth-walled slits in a rigid solid, for which prediction of its geometrical and acoustic properties is straightforward, can yield useful sound absorption. This microstructure should be relatively amenable to 3D printing. Discrepancies between measurements and predictions of normal incidence sound absorption spectra of 3D printed vertical and slanted slit pore samples have been attributed to the rough surfaces of the slit walls and uneven slit cross-sections perpendicular to the printing direction.

View Article and Find Full Text PDF

Ever since de Saussure [Course in General Lingustics (Columbia University Press, 1916)], theorists of language have assumed that the relation between form and meaning of words is arbitrary. However, recently, a body of empirical research has established that language is embodied and contains iconicity. Sound symbolism, an intrinsic link language users perceive between word sound and properties of referents, is a representative example of iconicity in language and has offered profound insights into theories of language pertaining to language processing, language acquisition, and evolution.

View Article and Find Full Text PDF
Article Synopsis
  • Halide perovskites, particularly tin halides, are gaining attention as thermoelectric materials due to their low thermal conductivity and good charge transport.
  • Partial substitution of Sn (II) with Ge (II) in CsSnGeI perovskite thin films enhances stability, keeping the material in the black orthorhombic phase after prolonged exposure to air.
  • Ge substitution significantly reduces lattice thermal conductivity and improves the understanding of phonon behavior in these mixed metal perovskites, contributing to their potential in thermoelectric applications.
View Article and Find Full Text PDF

Ultrasonic sensors based on backscattering principles have been developed for various applications involving arbitrary or random scatterer distributions. Although the theory of multiple scattering of waves is well-established, it has not been thoroughly explored in these applications. This work presents a feasible and simplified three-dimensional scattering model to predict the transient response generated by a set of rods positioned in the near field of a 1 MHz water-coupled ultrasonic transducer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!