Electron-ion coupling factor for temperature relaxation in dense plasmas.

Phys Rev E

CEA, DAM, DIF, F-91297 Arpajon, France.

Published: February 2020

We compare two formulas obtained from first principles to calculate the electron-ion coupling factor for temperature relaxation in dense plasmas. The quantum average-atom model is used to calculate this electron-ion coupling factor. It is shown that if the two formulas agree at sufficiently high temperature so that the potential energy is of limited importance, i.e., when the plasma is said to be kinetic, and are consistent with the Landau-Spitzer formula, then they strongly differ in the warm-dense-matter regime. Only one of the two is shown to be consistent with quantum molecular dynamics approach. We use this point to determine which formula is valid to describe temperature relaxation between electrons and ions in warm and hot dense plasmas.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.101.023206DOI Listing

Publication Analysis

Top Keywords

electron-ion coupling
12
coupling factor
12
temperature relaxation
12
dense plasmas
12
factor temperature
8
relaxation dense
8
calculate electron-ion
8
temperature
4
plasmas compare
4
compare formulas
4

Similar Publications

Confining CoSe/MoSe2 Heterostructures in Interconnected Carbon Polyhedrons for Superior Potassium Storage.

ChemSusChem

January 2025

Jilin University, School of Materials Science and Engineering, Renmin street 5988, School of Materials Science and Engineering, Jilin University, 130022, Changchun, CHINA.

Metal selenides hold promise as feasible anode materials for potassium-ion batteries (PIBs), but still face problems such as poor potassium storage kinetics and dramatic volume expansion. Coupling heterostructure engineering with structural design could be an effective strategy for rapid and stable K+ storage. Herein, CoSe/MoSe2 heterojunction encapsulated in nitrogen-doped carbon polyhedron and further interconnected by three-dimensional nitrogen-doped carbon nanofibers (CoMoSe@NCP/NCFs) is ingeniously constructed.

View Article and Find Full Text PDF

Damage Mechanisms in Polyalkenes Irradiated with Ultrashort XUV/X-Ray Laser Pulses.

J Phys Chem B

September 2024

Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8 182 00, Czech Republic.

Although polymers are widely used in laser-irradiation research, their microscopic response to high-intensity ultrafast XUV and X-ray irradiation is still largely unknown. Here, we comparatively study a homologous series of alkenes. The XTANT-3 hybrid simulation toolkit is used to determine their damage kinetics and irradiation threshold doses.

View Article and Find Full Text PDF

Conducting polymers are mixed ionic-electronic conductors that are emerging candidates for neuromorphic computing, bioelectronics and thermoelectrics. However, fundamental aspects of their many-body correlated electron-ion transport physics remain poorly understood. Here we show that in p-type organic electrochemical transistors it is possible to remove all of the electrons from the valence band and even access deeper bands without degradation.

View Article and Find Full Text PDF

Electron-ion collision and polarization of X-ray fluorescence radiation under hot quantum plasma conditions.

Appl Radiat Isot

September 2024

School of Science, Hunan University of Technology, Zhuzhou 412007, Hunan, PR China. Electronic address:

In the current article, the spectral properties and electron collision (total and magnetic) excitation cross sections of ions taking placed in quantum plasmas are investigated. These cross sections are further used to study the polarization and angular distribution characteristics of the de-excitation radiation X-ray spectra, which play an important role in basic theoretical research, the diagnosis of the plasma environment, and the design of optical devices. To do so, a distorted wave method within the relativistic Dirac-Coulomb atomic structure scheme is suggested.

View Article and Find Full Text PDF

Lithium (Li) metal anode (LMA) is one of the most promising anodes for high energy density batteries. However, its practical application is impeded by notorious dendrite growth and huge volume expansion. Although the three-dimensional (3D) host can enhance the cycling stability of LMA, further improvements are still necessary to address the key factors limiting Li plating/stripping behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!