Endurance exercise-induced expression of autophagy-related protein coincides with anabolic expression and neurogenesis in the hippocampus of the mouse brain.

Neuroreport

Molecular and Cellular Exercise Physiology Laboratory, Department of Movement Sciences and Health, Usha Kundu, MD College of Health, University of West Florida, Pensacola, Florida, USA.

Published: April 2020

Autophagy and neurogenesis play a pivotal role in maintaining cellular homeostasis of neurons in the brain. Endurance exercise (EXE) serves as a potent regulator of both autophagy and neurogenesis in the hippocampus of the brain; however, the underlying molecular mechanisms of the dual expression remains unclear. Thus, we examined the signaling pathways of EXE-induced autophagy and neurogenesis-associated protein expression in the hippocampus. C57BL/6 male mice (10 weeks old) were randomly divided into two groups: control group (n = 10) and EXE group (EXE, n = 10). Our results showed that EXE increased expression of autophagy-related protein [LC3 II, BECLIN1, autophagy-related 7 (ATG7), p62, LAMP2, CATHEPSIN L and transcription factor EB] in the presence of anabolic signaling expression (AKT-mammalian target of rapamycin-ribosomal S6 kinase). Intriguingly, long-term EXE-mediated neurogenesis in the hippocampus was observed despite the downregulated expressions of canonical neurotrophic factors (e.g. brain-derived neurotrophic factor, glial cell line-derived neurotrophic factors and nerve growth factor); instead, upregulation of neuregulin-1 (NRG1)-mediated signaling cascades (e.g. NRG1-extracellular signal-regulated kinase-ribosomal s6 kinase-cyclic adenosine mono-phosphate response element-binding protein) were associated with EXE-induced hippocampal neurogenesis and synaptic plasticity. Our data, for the first time, show that EXE-mediated expression of autophagy-related protein coincides with anabolic expression and that NRG1 is involved in EXE-mediated neurogenesis and synaptic plasticity. Taken together, this study provides a novel mechanism of hippocampal autophagy and neurogenesis, which may provide potential insight into developing therapeutic neuroprotective strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0000000000001431DOI Listing

Publication Analysis

Top Keywords

expression autophagy-related
12
autophagy-related protein
12
neurogenesis hippocampus
12
autophagy neurogenesis
12
expression
8
protein coincides
8
coincides anabolic
8
anabolic expression
8
n = 10 exe
8
exe-mediated neurogenesis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!