Protecting neurons from neurotoxicity is a job mainly performed by astrocytes through glutamate uptake and potassium buffering. These functions are aided principally by the Kir4.1 inwardly rectifying potassium channels located in the membrane of astrocytes. Astrocytes grown in hyperglycemic conditions have decreased levels of Kir4.1 potassium channels as well as impaired potassium and glutamate uptake. Previous studies performed in a human corneal epithelial cell injury model demonstrated a mechanism of regulation of Kir4.1 expression via the binding of microRNA-250 (miR-205) to the Kir4.1 3´ untranslated region. Our purpose is to test if astrocytes express miR-205 and elucidate its role in regulating Kir4.1 expression in astrocytes grown in hyperglycemic conditions. We used quantitative-PCR to assess the levels of miR-205 in astrocytes grown in high glucose (25 mM) medium compared to astrocytes grown in normal glucose (5 mM). We found that not only was miR-205 expressed in astrocytes grown in normal glucose, but its expression was increased up to six-fold in astrocytes grown in hyperglycemic conditions. Transfection of miR-205 mimic or inhibitor was performed to alter the levels of miR-205 in astrocytes followed by western blot to assess Kir4.1 channel levels in these cells. Astrocytes treated with miR-205 mimic had a 38.6% reduction of Kir4.1 protein levels compared to control (mock-transfected) cells. In contrast, astrocytes transfected with miR-205 inhibitor were significantly upregulated compared to mock by 47.4%. Taken together, our data indicate that miR-205 negatively regulates the expression of Kir4.1 in astrocytes grown in hyperglycemic conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127973PMC
http://dx.doi.org/10.1097/WNR.0000000000001427DOI Listing

Publication Analysis

Top Keywords

astrocytes grown
28
hyperglycemic conditions
20
grown hyperglycemic
16
astrocytes
14
kir41
9
mir-205
9
kir41 potassium
8
glutamate uptake
8
potassium channels
8
kir41 expression
8

Similar Publications

l-3,4-Dihydroxyphenylalanine (levodopa and L-DOPA in this text), alongside dopamine, boasts high biocompatibility, prompting industrial demand for its use as a coating material. Indeed, the effectiveness of L-DOPA is steadily rising as it serves as an oral therapeutic agent for neurodegenerative brain diseases, particularly Parkinson's disease (PD). However, the effects of L-DOPA on the growth and function of astrocytes, the main glial cells, and the most numerous glial cells in the brain, are unknown.

View Article and Find Full Text PDF

The family of pro-inflammatory and pro-angiogenic chemokines including Interleukin-8 (IL-8, aka CXCL8) and its homologues (CXCL1,2,3,5,6, and 7) exhibit promiscuous binding and activation of several G-protein-coupled receptors (i.e., CXCR2, CXCR1, and the atypical chemokine receptor (ACKR1)).

View Article and Find Full Text PDF

Transcriptomic and metabolic signatures of neural cells cultured under a physiologic-like environment.

J Biol Chem

October 2024

Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

Cultured brain cells are used conventionally to investigate fundamental neurobiology and identify therapeutic targets against neural diseases. However, standard culture conditions do not simulate the natural cell microenvironment, thus hampering in vivo translational insight. Major weaknesses include atmospheric (21%) O tension and lack of intercellular communication, the two factors likely impacting metabolism and signaling.

View Article and Find Full Text PDF

The extracellular matrix plays a critical role in modulating cell behaviour in the developing and adult central nervous system influencing neural cell morphology, function and growth. Neurons and astrocytes, play vital roles in neural signalling and support respectively and respond to cues from the surrounding matrix environment. However, a better understanding of the impact of specific individual extracellular matrix proteins on both neurons and astrocytes is critical for advancing the development of matrix-based scaffolds for neural repair applications.

View Article and Find Full Text PDF

There has been renewed interest in neural transplantation of cells and tissues for brain repair. Recent studies have demonstrated the ability of transplanted neural precursor cells and in vitro grown organoids to mature and locally integrate into host brain neural circuitry. Much effort has focused on how the transplant behaves and functions after the procedure, but the extent to which the host brain can properly innervate the transplant, particularly in the context of aging, is largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!