Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Semantic segmentation for lightweight object parsing is a very challenging task, because both accuracy and efficiency (e.g., execution speed, memory footprint or computational complexity) should all be taken into account. However, most previous works pay too much attention to one-sided perspective, either accuracy or speed, and ignore others, which poses a great limitation to actual demands of intelligent devices. To tackle this dilemma, we propose a novel lightweight architecture named Context-Integrated and Feature-Refined Network (CIFReNet). The core components of CIFReNet are the Long-skip Refinement Module (LRM) and the Multi-scale Context Integration Module (MCIM). The LRM is designed to ease the propagation of spatial information between low-level and high-level stages. Furthermore, channel attention mechanism is introduced into the process of long-skip learning to boost the quality of low-level feature refinement. Meanwhile, the MCIM consists of three cascaded Dense Semantic Pyramid (DSP) blocks with image-level features, which is presented to encode multiple context information and enlarge the field of view. Specifically, the proposed DSP block exploits a dense feature sampling strategy to enhance the information representations without significantly increasing the computation cost. Comprehensive experiments are conducted on three benchmark datasets for object parsing including Cityscapes, CamVid, and Helen. As indicated, the proposed method reaches a better trade-off between accuracy and efficiency compared with the other state-of-the-art methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2020.2978583 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!