Severity: Warning
Message: file_get_contents(https://...@pt+core-shell&datetype=edat&usehistory=y&retmax=5&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The structure and ultrafast photodynamics of ∼8 nm Au@Pt core-shell nanocrystals with ultrathin (<3 atomic layers) Pt-Au alloy shells are investigated to show that they meet the design principles for efficient bimetallic plasmonic photocatalysis. Photoelectron spectra recorded at two different photon energies are used to determine the radial concentration profile of the Pt-Au shell and the electron density near the Fermi energy, which play a key role in plasmon damping and electronic and thermal conductivity. Transient absorption measurements track the flow of energy from the plasmonic core to the electronic manifold of the Pt shell and back to the lattice of the core in the form of heat. We show that strong coupling to the high density of Pt(d) electrons at the Fermi level leads to accelerated dephasing of the Au plasmon on the femtosecond time scale, electron-electron energy transfer from Au(sp) core electrons to Pt(d) shell electrons on the sub-picosecond time scale, and enhanced thermal resistance on the 50 ps time scale. Electron-electron scattering efficiently funnels hot carriers into the ultrathin catalytically active shell at the nanocrystal surface, making them available to drive chemical reactions before losing energy to the lattice via electron-phonon scattering on the 2 ps time scale. The combination of strong broadband light absorption, enhanced electromagnetic fields at the catalytic metal sites, and efficient delivery of hot carriers to the catalyst surface makes core-shell nanocrystals with plasmonic metal cores and ultrathin catalytic metal shells promising nanostructures for the realization of high-efficiency plasmonic catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c01653 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!