The hippocampus supports memory encoding and retrieval, which may occur at distinct phases of the theta cycle. These processes dynamically interact over rapid timescales, especially when sensory information conflicts with memory. The ability to link hippocampal dynamics to memory-guided behaviors has been limited by experiments that lack the temporal resolution to segregate encoding and retrieval. Here, we simultaneously tracked eye movements and hippocampal field potentials while neurosurgical patients performed a spatial memory task. Phase-locking at the peak of theta preceded fixations to retrieved locations, indicating that the hippocampus coordinates memory-guided eye movements. In contrast, phase-locking at the trough of theta followed fixations to novel object-locations and predicted intact memory of the original location. Theta-gamma phase amplitude coupling increased during fixations to conflicting visual content, but predicted memory updating. Hippocampal theta thus supports learning through two interleaved processes: strengthening encoding of novel information and guiding exploration based on prior experience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069726 | PMC |
http://dx.doi.org/10.7554/eLife.52108 | DOI Listing |
Nat Neurosci
January 2025
Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
What is good in one scenario may be bad in another. Despite the ubiquity of such contextual reasoning in everyday choice, how the brain flexibly uses different valuation schemes across contexts remains unknown. We addressed this question by monitoring neural activity from the hippocampus (HPC) and orbitofrontal cortex (OFC) of two monkeys performing a state-dependent choice task.
View Article and Find Full Text PDFHippocampus
January 2025
Cognitive Science Program and Department of Psychology, University of Arizona, Tucson, Arizona, USA.
Numerous scientific advances and discoveries have arisen from research on the hippocampal formation. This special issue provides first-person historical descriptions of these advances and discoveries in hippocampal research, written by those directly involved in the research. This is the first section of a special issue that will also include future articles on this topic.
View Article and Find Full Text PDFNeurophysiol Clin
January 2025
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China. Electronic address:
Objectives: In the present study with a large cohort, we aimed to characterize intracerebral seizure onset patterns (SOP) of mesial temporal lobe epilepsy (mTLE), with or without hippocampal sclerosis (HS) as identified via magnetic resonance imaging (MRI).
Methods: We retrospectively analyzed 255 seizures of 76 consecutive patients with mTLE explored by stereoelectroencephalography (SEEG), including HS-mTLE (n = 52) and non-HS- mTLE (n = 24). Relevant results were obtained by a combination of spectral analysis and manual review.
Nat Commun
January 2025
Neurobiology Department, School of Biological Sciences, University of California, San Diego, CA, USA.
The hippocampal CA3 subregion is a densely connected recurrent circuit that supports memory by generating and storing sequential neuronal activity patterns that reflect recent experience. While theta phase precession is thought to be critical for generating sequential activity during memory encoding, the circuit mechanisms that support this computation across hippocampal subregions are unknown. By analyzing CA3 network activity in the absence of each of its theta-modulated external excitatory inputs, we show necessary and unique contributions of the dentate gyrus (DG) and the medial entorhinal cortex (MEC) to phase precession.
View Article and Find Full Text PDFHippocampus
January 2025
Department of Neurobiology and Biophysics, University of Washington School of Medicine, Washington National Primate Research Center, Seattle, Washington, USA.
During the 1990s and early 2000s, research in humans and in the nonhuman primate model of human amnesia revealed that tasks involving free viewing of images provided an exceptionally sensitive measure of recognition memory. Performance on these tasks was sensitive to damage restricted to the hippocampus as well as to damage that included medial temporal lobe cortices. Early work in my laboratory used free-viewing tasks to assess the neurophysiological correlates of recognition memory, and the use of naturalistic visual exploration opened rich avenues to assess other aspects of the impact of eye movements on neural activity in the hippocampus and entorhinal cortex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!