By means of high-resolution numerical simulations, we compare the statistical properties of homogeneous and isotropic turbulence to those of the Navier-Stokes equation where small-scale vortex filaments are strongly depleted, thanks to a nonlinear extra viscosity acting preferentially on high vorticity regions. We show that the presence of such smart small-scale drag can strongly reduce intermittency and non-Gaussian fluctuations. Our results pave the way towards a deeper understanding on the fundamental role of degrees of freedom in turbulence as well as on the impact of (pseudo)coherent structures on the statistical small-scale properties. Our work can be seen as a first attempt to develop smart-Lagrangian forcing or drag mechanisms to control turbulence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.084504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!