Predicting the B_{s}^{0}-B[over ¯]_{s}^{0} width difference ΔΓ_{s} relies on the heavy quark expansion and on hadronic matrix elements of ΔB=2 operators. We present the first lattice QCD results for matrix elements of the dimension-7 operators R_{2,3} and linear combinations R[over ˜]_{2,3} using nonrelativistic QCD for the bottom quark and a highly improved staggered quark (HISQ) action for the strange quark. Computations use MILC Collaboration ensembles of gauge field configurations with 2+1+1 flavors of sea quarks with the HISQ discretization, including lattices with physically light up or down quark masses. We discuss features unique to calculating matrix elements of these operators and analyze uncertainties from series truncation, discretization, and quark mass dependence. Finally we report the first standard model determination of ΔΓ_{s} using lattice QCD results for all hadronic matrix elements through O(1/m_{b}). The main result of our calculations yields the 1/m_{b} contribution ΔΓ_{1/m_{b}}=-0.022(10)  ps^{-1}. Adding this to the leading order contribution, the standard model prediction is ΔΓ_{s}=0.092(14)  ps^{-1}.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.082001DOI Listing

Publication Analysis

Top Keywords

matrix elements
20
lattice qcd
12
qcd matrix
8
b_{s}^{0}-b[over ¯]_{s}^{0}
8
¯]_{s}^{0} width
8
width difference
8
leading order
8
hadronic matrix
8
standard model
8
quark
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!