Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To gain insight into the kinetics of colloidal gel evolution at low particle volume fractions ϕ, we utilize differential dynamic microscopy to investigate particle aggregation, geometric percolation, and the subsequent transition to nonergodic dynamics. We report the emergence of unexpectedly rich multiscale dynamics upon the onset of nonergodicity, which separates the wave vectors q into three different regimes. In the high-q domain, the gel exhibits ϕ-independent internal vibrations of fractal clusters. The intermediate-q domain is dominated by density fluctuations at the length scale of the clusters, as evidenced by the q independence of the relaxation time τ. In the low-q domain, the scaling of τ as q^{-3} suggests that the network appears homogeneous. The transitions between these three regimes introduce two characteristic length scales, distinct from the cluster size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.088005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!