DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease.

Clin Sci (Lond)

Department of Nephrology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, No. 139 Renmin Middle Rd, Changsha 410011, Hunan, China.

Published: April 2020

Excessive mitochondrial fission has been identified as the central pathogenesis of diabetic kidney disease (DKD), but the precise mechanisms remain unclear. Disulfide-bond A oxidoreductase-like protein (DsbA-L) is highly expressed in mitochondria in tubular cells of the kidney, but its pathophysiological role in DKD is unknown. Our bioinformatics analysis showed that tubular DsbA-L mRNA levels were positively associated with eGFR but negatively associated with Scr and 24h-proteinuria in CKD patients. Furthermore, the genes that were coexpressed with DsbA-L were mainly enriched in mitochondria and were involved in oxidative phosphorylation. In vivo, knockout of DsbA-L exacerbated diabetic mice tubular cell mitochondrial fragmentation, oxidative stress and renal damage. In vitro, we found that DsbA-L was localized in the mitochondria of HK-2 cells. High glucose (HG, 30 mM) treatment decreased DsbA-L expression followed by increased mitochondrial ROS (mtROS) generation and mitochondrial fragmentation. In addition, DsbA-L knockdown exacerbated these abnormalities, but this effect was reversed by overexpression of DsbA-L. Mechanistically, under HG conditions, knockdown DsbA-L expression accentuated JNK phosphorylation in HK-2 cells. Furthermore, administration of a JNK inhibitor (SP600125) or the mtROS scavenger MitoQ significantly attenuated JNK activation and subsequent mitochondrial fragmentation in DsbA-L-knockdown HK-2 cells. Additionally, the down-regulation of DsbA-L also amplified the gene and protein expression of mitochondrial fission factor (MFF) via the JNK pathway, enhancing its ability to recruit DRP1 to mitochondria. Taken together, these results link DsbA-L to alterations in mitochondrial dynamics during tubular injury in the pathogenesis of DKD and unveil a novel mechanism by which DsbA-L modifies mtROS/JNK/MFF-related mitochondrial fission.

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20200005DOI Listing

Publication Analysis

Top Keywords

dsba-l
13
mitochondrial fission
12
mitochondrial fragmentation
12
hk-2 cells
12
mitochondrial
9
tubular cells
8
diabetic kidney
8
kidney disease
8
dsba-l expression
8
tubular
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!