A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Imaging GPCR internalization using near-infrared Nebraska red-based reagents. | LitMetric

Imaging GPCR internalization using near-infrared Nebraska red-based reagents.

Org Biomol Chem

Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, USA. and Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA and Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA and Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.

Published: April 2020

AI Article Synopsis

  • Internalization of G protein-coupled receptors (GPCRs) is a key process for reducing receptor activity, and improved imaging techniques can help identify new drugs.
  • The lab developed Nebraska Red (NR) dyes, a type of near-infrared (NIR) fluorophore, for better imaging of membrane proteins, focusing on the orexin type 2 receptor related to insomnia treatment.
  • NR-based HaloTag ligands allow for enhanced fluorescence and real-time monitoring of receptor internalization, which could lead to new discoveries in GPCR modulation and orphan receptor ligands.

Article Abstract

Internalization of G protein-coupled receptor (GPCRs) represents a nearly universal pathway for receptor downregulation. Imaging this process provides a means for the identification of pharmaceutical agents as well as potential ligands for orphan receptors. However, there is a need for the further development of near-infrared (NIR) probes capable of monitoring internalization in order to enable multiplexing with existing green fluorescent GPCR activity assays. Our laboratory has recently described a series of near-infrared (NIR) fluorophores in which a phosphinate functionality is inserted at the bridging position of the xanthene scaffold. These fluorophores, termed Nebraska Red (NR) dyes, provide attractive reagents for imaging protein localization. Herein, we disclose the development of NR-based HaloTag ligands for imaging membrane proteins on living cells. These new probes are utilized to image membrane pools of the human orexin type 2 receptor, an established target for the treatment of insomnia. We demonstrate the ability of fetal bovine serum (FBS) to noncovalently associate with a spirolactonized NR probe, enabling no-wash imaging with a 45-fold enhancement of fluorescence. Furthermore, we characterize the utility of NR-based HaloTag ligands for real-time monitoring of receptor internalization upon agonist stimulation. These new reagents enable potential multiplexing with existing GPCR activity assays in order to identify new modulators of GPCR activity as well as ligands for orphan receptors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261517PMC
http://dx.doi.org/10.1039/d0ob00043dDOI Listing

Publication Analysis

Top Keywords

gpcr activity
12
ligands orphan
8
orphan receptors
8
near-infrared nir
8
multiplexing existing
8
activity assays
8
nr-based halotag
8
halotag ligands
8
imaging
5
imaging gpcr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!