A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-performance inverted perovskite solar cells using 4-diaminomethylbenzoic as a passivant. | LitMetric

High-performance inverted perovskite solar cells using 4-diaminomethylbenzoic as a passivant.

Nanoscale

Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China.

Published: March 2020

Grain boundary (GB) and interface passivation of perovskite films impacts the efficiency and stability of perovskite solar cells (PSCs) dramatically. Here, an efficient passivation strategy using 4-diaminomethylbenzoic (4-DA) followed by thermal annealing treatment is proposed to improve the performance of PSCs. We have systemically investigated the impact of 4-DA on the physical properties of the perovskite layer and corresponding performance of the inverted PSCs. The results show that the contact between crystalline grains is improved, and high quality MAPbI films are successfully prepared, which result in the elimination of trap states and enhanced performance of the devices. The highest power conversion efficiency (PCE) of 20.58% is achieved in this work. Meanwhile, the devices show enhanced stability and the average PCE values almost remained the same after 168 hours of storage without any encapsulation. The passivation method developed in this work shows a novel strategy toward the fabrication of inverted PSCs with high efficiency and high stability.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr01142hDOI Listing

Publication Analysis

Top Keywords

perovskite solar
8
solar cells
8
inverted pscs
8
high-performance inverted
4
perovskite
4
inverted perovskite
4
cells 4-diaminomethylbenzoic
4
4-diaminomethylbenzoic passivant
4
passivant grain
4
grain boundary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!