To identify methylation-driven genes and establish a novel epigenetic signature for gastrointestinal (GI) pan-adenocarcinomas. Methylation and RNA-seq data for GI adenocarcinomas were downloaded from the Cancer Genome Atlas database. A methylation-driven gene signature was established by multivariate Cox regression analysis. We developed a prognostic nomogram using a combination of methylation-driven gene risk score and clinicopathological variables. A joint survival analysis based on gene expression and methylation was conducted to further investigate the prognostic role of methylation-driven genes. An epigenetic signature was established based on five methylation-driven genes. We also established a prognostic nomogram based on methylation-driven gene risk score and clinicopathologic factors, with a favorable predictive ability. Joint survival analysis revealed that 28 methylation-driven genes could be independent prognostic factors for overall survival for GI adenocarcinomas. An epigenetic signature was established that effectively predicts the overall survival for GI adenocarcinomas across anatomic boundaries.

Download full-text PDF

Source
http://dx.doi.org/10.2217/epi-2020-0036DOI Listing

Publication Analysis

Top Keywords

epigenetic signature
16
methylation-driven genes
16
methylation-driven gene
12
signature established
12
novel epigenetic
8
signature gastrointestinal
8
gastrointestinal pan-adenocarcinomas
8
prognostic nomogram
8
gene risk
8
risk score
8

Similar Publications

Background: Despite significant advancements in the development of blood biomarkers for AD, challenges persist due to the complex interplay of genetic and environmental risk factors in AD pathogenesis. Epigenetic processes, including non-coding RNAs and especially microRNAs (miRs), have emerged as important players in the molecular mechanisms underlying neurodegenerative diseases. MiRs have the ability to fine-tune gene expression and proteostasis, and microRNAome profiling in liquid biopsies is gaining increasing interest since changes in miR levels can indicate the presence of multiple pathologies.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of California, San Diego, San Diego, CA, USA.

Background: Microglia are the major innate immune cells of the brain and play diverse roles in brain development and homeostasis. In the context of Alzheimer's disease, microglia acquire new phenotypes that can exert protective or pathogenic roles. Single cell and single nuclei RNA sequencing experiments have defined molecular signatures of different disease-associated microglia states associated with protective or pathogenic functions, but the mechanisms driving these transitions are not known.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

UK Dementia Research Institute, London, United Kingdom.

Background: Microglia are key players in Alzheimer's disease (AD): Genetic risk for AD is enriched in microglial enhancers, and microglial gene regulatory networks have been shown to be disrupted in AD. Here, we studied polygenic and variant-specific (APOE) risk burden for AD in a xenotransplantation model of AD and human post-mortem brain tissue.

Method: We profiled gene regulation by RNA-seq and ATAC-seq in human iPS-derived microglia, xenotransplanted into the APPNL-G-F mouse model of AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease that inflicts the elderly worldwide. Recent studies revealed the association of abnormal methylomic alterations in AD. However, a systematic and comprehensive study is needed to investigate the effects of methylomic changes on the molecular networks underpinning AD, in particular, in brain regions most vulnerable to AD neuropathology.

View Article and Find Full Text PDF

Background: Epigenetic mechanisms as a potential underlying pathogenic mechanism of neurodegenerative diseases have been the scope of several studies performed so far. However, there is a gap in analyzing different forms of early-onset dementia to minimize the effect of aging and the use of Lymphoblastoid cell lines (LCLs) as a possible disease model for earlier clinical phases.

Method: We performed a genome-wide DNA methylation analysis in 64 samples (from prefrontal cortex and lymphoblastoid cell lines) from Alzheimer's Disease (AD) and Frontotemporal dementia (FTD) using the Illumina Infinium MethylationEPIC V2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!