Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of low voltage and low concentration contrast agent on image quality of coronary CT angiography, radiation dose and iodine intake was evaluated. A total of 121 patients with body mass index (BMI) <26 kg/m and heart rate (HR) <70 beats/min were randomly divided into four groups: group A (n=31, 80 kVp, 270 mgI/mL); group B (n=33, 100 kVp, 270 mgI/mL); group C (n=30, 100 kVp, 320 mgI/mL); group D (n=27, 100 kVp, 400 mgI/mL). The automatic current modulation system and the iterative algorithm for reconstruction were adopted in each group. The CT values and SD values of the aortic root (AR), subcutaneous fat, left coronary artery opening (LCA), and right coronary artery opening (RCA) were measured in all groups, the signal-to-noise ratio (SNR) and contrast noise ratio (CNR) were calculated, and effective radiation dose and iodine intake were recorded. The subjective assessment for image quality was performed by two physicians using a 4-point scale. The results were compared using the one-way ANOVA and rank sum tests. The image quality of the four groups met the clinical diagnostic requirements. The CT values of AR in groups A, B, C, and D were 537.6±71.4, 447.2±81.9, 445.2±64.9 and 518.5±94.9 Hu, respectively, with no significant difference between group A and group D, or between group B and group C, while CT values in groups B and C were significantly lower than those in groups A and D (P<0.05). In groups A, B, C, and D, the LCA SNR values were 22.7±9.1, 23.3±9.1, 23.3±7.7 and 26.6±8.9, and the RCA CNR values were 26.9±9.8, 28.5±11.4, 27.7±8.8 and 32.1±10.6, respectively. The AR visual scores in groups A, B, C and D were 3.8±0.2, 3.9±0.3, 3.9±0.3 and 4.0±0.3, respectively. There were no significant differences in SNR, CNR and visual score among the four groups (P>0.05). The radiation doses in groups A, B, C and D were 2.6±1.4, 3.6±1.8, 4.9±3.5 and 4.9±2.8 mSv, respectively. The radiation dose in group A was significantly less than that in the rest three groups (P<0.05). The iodine intakes in groups A, B, C and D were 14.9±1.5, 15.0±1.5, 17.7±2.0 and 18.1±2.5 g, respectively. There was no significant difference in the intake of iodine between groups C and D, or between groups A and B, while iodine intake in groups A and B were significantly reduced as compared with that in groups C and D (P<0.05). It was concluded that for patients with low BMI and controlled HR, compared to 100 kVp tube voltage combined with multiple concentration contrast agents, 80 kVp combined with 270 mgI/mL contrast agent is enough to ensure the quality of the images, and can reduce the radiation dose significantly, while reducing the amount of iodine intake notably, thus reducing the incidence of adverse reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11596-020-2162-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!