AI Article Synopsis

  • Sinomenine (SN) has been clinically used for treating autoimmune diseases like lupus and rheumatoid arthritis, showing benefits such as anti-inflammation and suppression of immune responses.
  • In a study, it was found that SN effectively inhibits macrophage activation induced by lipopolysaccharide (LPS) by down-regulating inflammatory cytokines and key proteins in the TLR4/NF-κB signaling pathway.
  • The research suggests that SN's mechanism involves blocking the TLR4/NF-κB pathway, which could lead to new therapeutic strategies for managing inflammatory responses.

Article Abstract

Sinomenine (SN) has been used in the clinical treatment of systemic lupus erythematosus and rheumatoid arthritis for many years. Studies showed that SN held protective effects such as anti-inflammation, scavenging free radicals and suppressing immune response in many autoimmune diseases. The purpose of the present study is to explore the mechanism of anti-inflammation of SN on lipopolysaccharide (LPS)-induced macrophages activation and investigate whether the TLR4/NF-κB signaling pathway participated in. Macrophages isolated from mouse peritoneal cavity were stimulated by 1 µg/mL LPS for 24 h. And then the cells were treated with various concentrations of SN, TLR4 inhibitor respectively for additional 48 h. Drug toxicity was detected by MTT assay and Transwell experiment was used to assess chemotaxis. Furthermore, TLR4 and MyD88 mRNA levels were detected by real-time PCR. Western blotting was used to examine TLR4, MyD88 and phosphorylated IκB protein expression in macrophages. Immunofluorescence assay was applied to observe p65 NF-κB protein expression in macrophage nucleus. We extracted macrophages with high purity and activity from the abdominal cavity of mice. SN remarkably inhibited the chemotaxis and secretion function of LPS-stimulated macrophages. It also down-regulated both the protein levels of inflammatory cytokines (TNF-α, IL-1β and IL-6) and the RNA and protein levels of the key factors (TLR4, MyD88, P-IκB) in TLR4 pathway. The expression of p65 NF-κB protein in nuclei was down-regulated, which was correlated with a similar decrease in P-IκB protein level. In conclusion, SN can inhibit the LPS induced immune responses in macrophages by blocking the activated TLR4/NF-κB signaling pathway. These results may provide a therapeutic approach to regulate inflammatory responses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11596-020-2156-6DOI Listing

Publication Analysis

Top Keywords

tlr4/nf-κb signaling
12
signaling pathway
12
tlr4 myd88
12
activated tlr4/nf-κb
8
protein expression
8
p65 nf-κb
8
nf-κb protein
8
protein levels
8
macrophages
7
protein
6

Similar Publications

Background: We previously identified that high-mobility group box-1 (HMGB1) is increased and undergoes post-translational modifications (PTMs) in response to alcohol consumption. Here, we hypothesized that specific PTMs, occurring mostly in hepatocytes and myeloid cells, could contribute to the pathogenesis of alcohol-associated liver disease (AALD).

Methods: We used the Lieber-DeCarli (LD) model of early alcohol-induced liver injury, combined with engineered viral vectors and genetic approaches to regulate the expression of HMGB1, its PTMs (reduced [H], oxidized [O], acetylated [Ac], both [O + Ac]), and its receptors (RAGE, TLR4) in a cell-specific manner (hepatocytes and/or myeloid cells).

View Article and Find Full Text PDF

Introduction: Macrophage-inducible C-type lectin (Mincle) has emerged as a potential contributor to neuropathic pain induction and neuroinflammatory responses within the spinal cord. Moreover, evidence suggests a close association between toll-like receptor (TLR) and Mincle expression in myeloid cells. This study evaluated the effectiveness of Mincle antibodies in neuropathic pain and identified the epitope of these antibodies.

View Article and Find Full Text PDF

This study aimed to investigate the differential expression of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in relation to the Toll-like receptor (TLR)/nuclear factor κB (NF-κB) signaling pathway in an obese rat model. A total of 200 8-week-old male Wistar rats were randomly assigned to a control group (Ctrl, = 40) and an observation group (Obs, = 160), with obesity induced through a high-fat diet. Following modeling, the Obs group was further divided into a model group, a PI3K/AKT inhibition group, a TLR/NF-κB inhibition group, and a combined PI3K/AKT + TLR/NF-κB inhibition group, with 40 rats in each.

View Article and Find Full Text PDF

Combined TLR2/TLR4 activation equip non-mucosal dendritic cells to prime Th1 cells with gut tropism.

iScience

December 2024

CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal.

Activated CD4 T cells located at mucosal surfaces orchestrate local effector immune mechanisms. When properly polarized, these cells contribute to block infections at early stages and may be essential to restrain the local growth of mucosal tumors, playing a critical role in host protection. How CD4 T cells simultaneously integrate gut-homing instructions and Th polarization signals transmitted by TLR activated dendritic cells (DCs) is unknown.

View Article and Find Full Text PDF

The Gram-negative bacterium Klebsiella pneumoniae (K. pneumoniae) is one major causative agent of community- and hospital-acquired pneumonia. Echinacoside (ECH) is a phenylethanoid glycoside isolated from Cistanche deserticola that possesses anti-inflammatory activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!