The fundamental processes of neural communication have been largely conserved through evolution. Throughout the last century, researchers have taken advantage of this, and the experimental tractability of invertebrate animals, to advance understanding of the nervous system that translates to mammalian brain. This started with the inspired analysis of the ionic basis of neuronal excitability and neurotransmission using squid during the 1940s and 1950s and has progressed to detailed insight into the molecular architecture of the synapse facilitated by the genetic tractability of the nematode and the fruit fly . Throughout this time, invertebrate preparations have provided a means to link neural mechanisms to behavioural plasticity and thus key insight into fundamental aspects of control systems, learning, and memory. This article captures key highlights that exemplify the historical and continuing invertebrate contribution to neuroscience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058240 | PMC |
http://dx.doi.org/10.1177/2398212818818068 | DOI Listing |
Anal Chim Acta
February 2025
Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:
Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.
View Article and Find Full Text PDFNeurosciences (Riyadh)
January 2025
From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.
The hippocampus, noted as (HC), plays a crucial role in the processes of learning, memory formation, and spatial navigation. Recent research reveals that this brain region can undergo structural and functional changes due to environmental exposures, including stress, noise pollution, sleep deprivation, and microgravity. This review synthesizes findings from animal and human studies, emphasizing the HC's plasticity in response to these factors.
View Article and Find Full Text PDFBiol Psychiatry
January 2025
Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China; MOE Key Lab for Neuro information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, PR China. Electronic address:
Background: Minimally verbal children with autism are understudied and lack effective treatment options. Personalized continuous theta-burst stimulation (cTBS) targeting the amygdala and its circuitry may be a potential therapeutic approach for this population.
Methods: In a double-blind randomized controlled trial, minimally verbal children with autism (ages 2-8 years) received 4 weeks of cTBS.
Ecotoxicol Environ Saf
January 2025
Department of Neurosurgery, Tangdu Hospital, Airforce Military Medical University, Xi'an, Shaanxi, China. Electronic address:
Accumulation of nanoplastics (NPs) poses a severe threat to the homeostasis of the internal environment in patients with chronic diseases. The effects of NP contamination on health in chronically ill populations must urgently be elucidated. In this study, NPs injected via the tail vein were distributed in the brain and internal organs in a mouse model of chronic internal carotid occlusion.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Pearl Research Institute, Guangdong Ocean University, Zhanjiang, China.
Plastic pollution, particularly microplastics and nanoplastics, poses a significant threat to marine ecosystems. Bivalves, vital filter feeders that accumulate plastic particles, underscore the necessity for advanced omics technologies to grasp their molecular reactions to plastic exposure. This review delves into the impact of microplastics and nanoplastics on bivalves utilizing advanced omics technologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!