The development of antipsychotic drugs.

Brain Neurosci Adv

Division of Psychiatry, College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.

Published: December 2018

Antipsychotic drugs revolutionised psychiatric practice and provided a range of tools for exploring brain function in health and disease. Their development and introduction were largely empirical but based on long and honourable scientific credentials and remarkable powers of clinical observation. The class shares a common core action of attenuating central dopamine transmission, which underlies the major limitation to their use - high liability to disrupt extrapyramidal function - and also the most durable hypothesis of the basis of psychotic disorders, especially schizophrenia. However, the Dopamine Hypothesis, which has driven drug development for almost half a century, has become a straight-jacket, stifling innovation, resulting in a class of compounds that are largely derivative. Recent efforts only cemented this tendency as no clinical evidence supports the notion that newer compounds, modelled on clozapine, share that drug's unique neurological tolerability and can be considered 'atypical'. Patients and doctors alike must await a more profound understanding of central dopamine homeostasis and novel methods of maintaining it before they can again experience the intoxicating promise antipsychotics once held.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058266PMC
http://dx.doi.org/10.1177/2398212818817498DOI Listing

Publication Analysis

Top Keywords

antipsychotic drugs
8
central dopamine
8
development antipsychotic
4
drugs antipsychotic
4
drugs revolutionised
4
revolutionised psychiatric
4
psychiatric practice
4
practice provided
4
provided range
4
range tools
4

Similar Publications

Background: Switching between versions of medication products happens commonly despite challenges in achieving bioequivalence and therapeutic equivalence. Central nervous system and psychiatric drugs, especially those that are technically demanding to manufacture and have complex pharmacokinetic properties, such as long-acting injectables (LAIs), pose particular challenges to bioequivalence and safe and efficacious drug switching.

Aims: To assess whether drugs deemed "bioequivalent" are truly interchangeable in drug switching.

View Article and Find Full Text PDF

Background: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition emerging in early childhood, characterized by core features such as sociocommunicative deficits and repetitive, rigid behaviors, interests, and activities. In addition to these, disruptive behaviors (DB), including aggression, self-injury, and severe tantrums, are frequently observed in pediatric patients with ASD. The atypical antipsychotics risperidone and aripiprazole, currently the only Food and Drug Administration-approved treatments for severe DB in patients with ASD, often encounter therapeutic failure or intolerance.

View Article and Find Full Text PDF

Pre-established anaesthetic protocols in animal models might unexpectedly interfere with the main outcome of scientific projects and therefore they need to account for the specific research goals. We aimed to optimize the anaesthetic protocol and animal handling strategies in a diabetes-related-study exemplifying how the anaesthetic approach must be adjusted for individual research targets. Aachen minipigs were used as a model to test long-lasting skin glucose sensors for diabetic human patients.

View Article and Find Full Text PDF

Temperature regulation in dogs is significantly impaired during general anesthesia. Glabrous skin on paws may facilitate thermoregulation from this area and is a potential target for interventions attenuating hypothermia. This pilot study aimed to compare efficacy of an innovative warming device placed on the front paws (AVAcore; AVA), with no warming methods (NONE) and conventional truncal warming methods (CONV; circulating water blanket/forced air warmer) on rectal temperature and anesthetic recovery times.

View Article and Find Full Text PDF

Pharmacotherapy for Tourette Syndrome.

Psychiatr Clin North Am

March 2025

Pediatric Psychiatry OCD and Tic Disorders Program, Department of Psychiatry, Massachusetts General Hospital, 185 Cambridge Street, Suite 2000, Boston, MA 02114, USA. Electronic address:

Tourette syndrome (TS) is associated with dysregulated cortico-striatal-thalamo-cortical neural circuitry, of which the primary implicated neurotransmitters include dopamine, glutamate, and gamma-aminobutyric acid. Pharmacologic intervention for tics should be considered when tics are causing psychological, functional, or physical impairment, and behavioral treatment is either inaccessible or ineffective. Only 3 medications have Food and Drug Administration approval for TS, including 2 typical antipsychotics (pimozide and haloperidol) and 1 atypical antipsychotic (aripiprazole).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!