A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computationally Efficient System Matrix Calculation Techniques in Computed Tomography Iterative Reconstruction. | LitMetric

Background: Relative to classical methods in computed tomography, iterative reconstruction techniques enable significantly improved image qualities and/or lowered patient doses. However, the computational speed is a major concern for these iterative techniques. In the present study, we present a method for fast system matrix calculation based on the line integral model (LIM) to speed up the computations without compromising the image quality. In addition, we develop a hybrid line-area integral model (AIM) that highlights the advantages of both LIM and AIMs.

Methods: The contributing detectors for a given pixel and a given projection view, and the length of corresponding intersection lines with pixels, are calculated using our proposed algorithm. For the hybrid method, the respective narrow-angle fan beam was modeled by multiple equally spaced lines. The computed system matrix was evaluated in the context of reconstruction using the simultaneous algebraic reconstruction technique (SART) as well as maximum likelihood expectation maximization (MLEM).

Results: The proposed LIM offers a considerable reduction in calculation times compared to the standard Siddon algorithm: 2.9 times faster. Differences in root mean square error and peak signal-to-noise ratio were not significant between the proposed LIM and the Siddon algorithm for both SART and MLEM reconstruction methods ( > 0.05). Meanwhile, the proposed hybrid method resulted in significantly improved image qualities relative to LIM and the Siddon algorithm ( < 0.05), though computations were 4.9 times more intensive than the proposed LIM.

Conclusion: We have proposed two fast algorithms to calculate the system matrix. The first is based on LIM and was faster than the Siddon algorithm, with matched image quality, whereas the second method is a hybrid LIM-AIM that achieves significantly improved images though with its computational requirements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038747PMC
http://dx.doi.org/10.4103/jmss.JMSS_29_19DOI Listing

Publication Analysis

Top Keywords

system matrix
16
siddon algorithm
16
matrix calculation
8
computed tomography
8
tomography iterative
8
iterative reconstruction
8
improved image
8
image qualities
8
integral model
8
image quality
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!