Identification of machine tool squareness errors via inertial measurements.

CIRP Ann Manuf Technol

Engineering Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899-8220, USA.

Published: January 2019

The accuracy of multi-axis machine tools is affected to a large extent by the behavior of the system's axes and their error sources. In this paper, a novel methodology using circular inertial measurements quantifies changes in squareness between two axes of linear motion. Conclusions are reached through direct utilization of measured accelerations without the need for double integration of sensor signals. Results revealed that the new methodology is able to identify squareness values verified with traditional measurement methods. The work supports the integration of sensors into machine tools in order to reach higher levels of measurement automation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067305PMC
http://dx.doi.org/10.1016/j.cirp.2019.04.070DOI Listing

Publication Analysis

Top Keywords

inertial measurements
8
machine tools
8
identification machine
4
machine tool
4
tool squareness
4
squareness errors
4
errors inertial
4
measurements accuracy
4
accuracy multi-axis
4
multi-axis machine
4

Similar Publications

Motor variability regulation analysis in trampolinists.

J Biomech

January 2025

Laboratoire de Simulation et Modélisation du Mouvement, Université de Montréal, Montréal, QC, Canada. Electronic address:

In trampolining, optimizing body orientation during landing reduces injury risk and enhances performance. As trampolinists are subject to motor variability, anticipatory inflight corrections are necessary to regulate their body orientation before landing. We investigated the evolution of a) body orientation and b) limb position (i.

View Article and Find Full Text PDF

Introduction: Gait analysis is a vital tool in the assessment of human movement and has been widely used in clinical settings to identify potential abnormalities in individuals. However, there is a lack of consensus on the normative values for gait metrics in large populations. The primary objective of this study is to establish a normative database of spatiotemporal gait metrics across various age groups, contributing to a broader understanding of human gait dynamics.

View Article and Find Full Text PDF

Action Recognition in Basketball with Inertial Measurement Unit-Supported Vest.

Sensors (Basel)

January 2025

Computer Engineering Department, Engineering Faculty, Aydın Adnan Menderes University, Aydın 09100, Türkiye.

In this study, an action recognition system was developed to identify fundamental basketball movements using a single Inertial Measurement Unit (IMU) sensor embedded in a wearable vest. This study aims to enhance basketball training by providing a high-performance, low-cost solution that minimizes discomfort for athletes. Data were collected from 21 collegiate basketball players, and movements such as dribbling, passing, shooting, layup, and standing still were recorded.

View Article and Find Full Text PDF

In hospitals, timely interventions can prevent avoidable clinical deterioration. Early recognition of deterioration is vital to stopping further decline. Measuring the way patients position themselves in bed and change their positions may signal when further assessment is necessary.

View Article and Find Full Text PDF

According to South Korea's Ministry of Employment and Labor, approximately 25,000 construction workers suffered from various injuries between 2015 and 2019. Additionally, about 500 fatalities occur annually, and multiple studies are being conducted to prevent these accidents and quickly identify their occurrence to secure the golden time for the injured. Recently, AI-based video analysis systems for detecting safety accidents have been introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!