Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9) system has become a revolutionary tool for gene editing. Since viral delivery systems have significant side effects, and naked DNA delivery is not an option, the nontoxic, non-viral delivery of CRISPR/Cas9 components would significantly improve future therapeutic delivery. In this study, we aim at characterizing nanoparticles to deliver plasmid DNA encoding for the CRISPR-Cas system in eukaryotic cells in vitro. CRISPR/Cas9 complexed polyethylenimine (PEI) magnetic nanoparticles (MNPs) were generated. We used a stable HEK293 cell line expressing the traffic light reporter (TLR-3) system to evaluate efficient homology- directed repair (HDR) and non-homologous end joining (NHEJ) events following transfection with NPs. MNPs have been synthesized by co-precipitation with the average particle size around 20 nm in diameter. The dynamic light scattering and zeta potential measurements showed that NPs exhibited narrow size distribution and sufficient colloidal stability. Genome editing events were as efficient as compared to standard lipofectamine transfection. Our approach tested non-viral delivery of CRISPR/Cas9 and DNA template to perform HDR and NHEJ in the same assay. We demonstrated that PEI-MNPs is a promising delivery system for plasmids encoding CRISPR/Cas9 and template DNA and thus can improve safety and utility of gene editing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067791 | PMC |
http://dx.doi.org/10.1038/s41598-020-61465-6 | DOI Listing |
Electromagn Biol Med
January 2025
Department of Mathematics, University of Gour Banga, Malda, India.
In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.
It is a major challenge to obtain broadband microwave absorption (MA) properties using low dielectric or magnetic nanoparticle-decorated carbon composites due to the limited single conductive loss or polarization loss of the carbon materials used as substrates. Novel pure cellulose-derived graphite carbon (CGC) materials can be used as an exceptional substrate option due to their special defective graphitic carbon structure, which provides both conduction and polarization loss. Herein, CGC@ZnO composites were first synthesized by atomic layer deposition (ALD) for use as microwave absorbents.
View Article and Find Full Text PDFACS Nano
January 2025
Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
With the increasing popularity of electric transportation over the past several years, fast-charging lithium-ion batteries are highly demanded for shortening electric vehicles' charging time. Extensive efforts have been made on material development and electrode engineering; however, few of them are scalable and cost-effective enough to be potentially incorporated into the current battery production. Here, we propose a facile magnetic templating method for preparing LiFePO (LFP) cathodes with vertically aligned graphene sheets to realize fast-charging properties at a practical loading of 20 mg cm.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 East 1st Ring Road, Hanzhong, Shaanxi 723001, PR China.
The advantages of large surface area, high volume ratio, good biocompatibility, and controllable surface functionalization make hollow mesoporous silica nanoparticles (HMSNs) an ideal drug carrier. HMSNs can achieve high efficiency, targeting, and controlled release by adjusting the microstructure and surface modification of its particles, which makes it broad application prospects in the field of medical therapy, especially in cancer therapy. Numerous studies have shown that preparation method, shape, particle size, hollow inner diameter, aperture and wall thickness of the HMSNs, the characteristics of the drugs, the interaction between the drugs and the carriers, and the external environment all closely affect the drug delivery, release, and efficacy.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China. Electronic address:
Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!