Acute kidney injury (AKI) is nearly universally associated with worse outcomes, especially among children after hematopoietic stem cell transplant (HCT). Our objective was to examine urinary immune biomarkers of AKI after HCT to provide insights into novel mechanisms of kidney injury in this population. Studying patients undergoing allogeneic HCT provides a unique opportunity to examine immune markers of AKI because the risk of AKI is high and the immune system newly develops after transplant. Children (>2 years old) and young adults undergoing their first allogeneic HCT and enrolled in a prospective, observational cohort study at 2 large children's hospitals had urine collected pre-HCT and monthly for the first 4 months after HCT. Urine samples at each monthly time point were assayed for 8 immune-related biomarkers. AKI was defined as a 1.5-fold increase in the monthly serum creatinine value, which was recorded ±1 day from when the research urine sample was obtained, as compared with the pre-HCT baseline. Generalized estimating equation regression analysis evaluated the association between the monthly repeated measures (urinary biomarkers and AKI). A total of 176 patients were included from 2 pediatric centers. Thirty-six patients from 1 center were analyzed as a discovery cohort and the remaining 140 patients from the second center were analyzed as a validation cohort. AKI rates were 18% to 35% depending on the monthly time point after HCT. Urine CXCL10 and CXCL9 concentrations were significantly higher among children who developed AKI compared with children who did not (P < .01) in both cohorts. In order to gain a better understanding of the cellular source for these biomarkers in the urine, we also analyzed in vitro expression of CXCL10 and CXCL9 in kidney cell lines after stimulation with interferon-γ and interferon-α. HEK293-epithelial kidney cells demonstrated interferon-induced expression of CXCL10 and CXCL9, suggesting a potential mechanism driving the key finding. CXCL10 and CXCL9 are associated with AKI after HCT and are therefore promising biomarkers to guide improved diagnostic and treatment strategies for AKI in this high-risk population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306432PMC
http://dx.doi.org/10.1016/j.bbmt.2020.02.024DOI Listing

Publication Analysis

Top Keywords

cxcl10 cxcl9
20
kidney injury
12
biomarkers aki
12
aki
10
acute kidney
8
children hematopoietic
8
urine cxcl10
8
aki hct
8
undergoing allogeneic
8
allogeneic hct
8

Similar Publications

Objective: Aberrant 6-phosphofructo-2kinase/fructose-2,6-bisphoshatase 3 (PFKFB3) expression is tightly correlated with multiple steps of tumorigenesis; however, the pathological significance of PFKFB3 in macrophages in patients with rheumatoid arthritis (RA) remains obscure. In this study, we examined whether PFKFB3 modulates macrophage activation and promotes RA development.

Method: Peripheral blood mononuclear cells (PBMCs) from patients with RA, THP-1 cells, and bone marrow-derived macrophages from conditional PFKFB3-knockout mice were used to investigate the mechanism underlying PFKFB3-induced macrophage regulation of RA.

View Article and Find Full Text PDF

Defining the CSF cytokine/chemokine and injury biomarker signature of glial fibrillary acidic protein (GFAP) autoimmunity can inform immunopathogenesis. CSF GFAP-IgG-positive samples (N = 98) were tested for 17 cytokines/chemokines, neurofilament light chain (NfL), and GFAP (ELLA, Bio-Techne). Controls included non-inflammatory (N = 42), AQP4-IgG-positive (N = 83), CNS infections (N = 13), and neurosarcoidosis (N = 32).

View Article and Find Full Text PDF

In cutaneous melanoma, epigenetic dysregulation is implicated in drug resistance and tumor immune escape. However, the epigenetic mechanisms that influence immune escape remain poorly understood. To elucidate how epigenetic dysregulation alters the expression of surface proteins that may be involved in drug targeting and immune escape, we performed a 3-dimensional surfaceome screen in primary melanoma cultures and identified the DNA-methyltransferase inhibitor decitabine as significantly upregulating the costimulatory molecule ICAM-1.

View Article and Find Full Text PDF

Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a major contributor to morbidity and mortality in infants. We developed an in vitro model of human respiratory infection to study cellular immune responses to RSV in infants, children, and adults. The model includes human lung epithelial A549 cells or human fetal lung fibroblasts infected with a clinical strain of RSV at a multiplicity of infection of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!