CaMKII is a Ca/CaM-dependent protein kinase encoded by a family of conserved genes found throughout all metazoan species and expressed from fertilization into adulthood. One of these genes, camk2g1, is particularly important during early development as determined by pharmacologic, dominant negative and antisense morpholino approaches in zebrafish. Four other teleost fish species (cavefish, medaka, stickleback, and tilapia), exhibit sequence conservation of camk2g1 and duplication of the same CaMKII genes. A homozygous mutant of camk2g1 was generated in zebrafish using TALEN technology but yielded none of the phenotypic alterations seen using all other approaches and was reproductively viable. However, these camk2g1 mutant embryos showed a 4-fold over-expression of its paralog camk2g2. None of the other camk2 genes showed such transcriptional elevation, in fact, some of these genes were suppressed to 10% of wild type levels. In contrast, G0 camk2g1 CRISPR/Cas9 embryos recapitulated nearly all of the altered phenotypes observed in camk2g1 morphants, including renal, aural and ciliary defects. These findings validate the importance of this gene family during early zebrafish development and provide evidence for gene-specific transcriptional cross-talk consistent with genetic compensation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2020.144567 | DOI Listing |
Nat Commun
January 2025
European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed.
View Article and Find Full Text PDFBackground: A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.
View Article and Find Full Text PDFZebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and School of Life Sciences, Yunnan University, Kunming 650091, China.
The human transmembrane protease, serine 2 (TMPRSS2), essential for SARS-CoV-2 entry, is a key antiviral target. Here, we computationally profiled the TMPRSS2-binding affinities of 15 antiviral compounds. Molecular dynamics (MD) simulations for the docked complexes revealed that three compounds exited the substrate-binding cavity (SBC), suggesting noncompetitive inhibition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!