Simulations of sea urchin early development delineate the role of oriented cell division in the morula-to-blastula transition.

Mech Dev

Division of Pediatric Surgery, Departments of Surgery and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America. Electronic address:

Published: June 2020

The sea urchin morula to blastula transition has long been thought to require oriented cell divisions and blastomere adherence to the enveloping hyaline layer. In a computer simulation model, cell divisions constrained by a surface plane division rule are adequate to effect morphological transition. The hyaline membrane acts as an enhancer but is not essential. The model is consistent with the orientation of micromere divisions and the open blastulae of direct developing species. The surface plane division rule precedes overt epithelization of surface cells and acts to organize the developing epithelium. It is a universal feature of early metazoan development and simulations of non-echinoid cleavage patterns support its role throughout Metazoa. The surface plane division rule requires only local cues and cells need not reference global positional information or embryonic axes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mod.2020.103606DOI Listing

Publication Analysis

Top Keywords

surface plane
12
plane division
12
division rule
12
sea urchin
8
oriented cell
8
cell divisions
8
simulations sea
4
urchin early
4
early development
4
development delineate
4

Similar Publications

We introduce a circle rolling method (CRM) for boundary extraction from 2D point clouds. The core idea is to create a circle that performs pure rolling on the perimeter of the point cloud to obtain the boundary. For a 3D point cloud, a plane adsorbs points on both sides to create a 2D point cloud, and the CRM is used to extract the boundary points and map them back into space to obtain 3D boundary points.

View Article and Find Full Text PDF

A Method for Determining the Minimum Thickness of the Cut Layer in Precision Milling.

Materials (Basel)

January 2025

Department of Machine Design and Manufacturing Engineering, Kielce University of Technology, al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland.

The minimum cutting thickness is a key value in machining processes, as below this value the material will only undergo elastic and plastic deformation without chip removal. Existing measurement methods require time-consuming preparation and complicated procedures. This work focuses on the development of a new, simplified method for determining the minimum cutting thickness (h) using a contact profilometer that can be used in industry.

View Article and Find Full Text PDF

The introduction of 3D printing technology has broadened manufacturing possibilities, allowing the production of complex cellular geometries, including auxetic and curved plane structures, beyond the standard honeycomb patterns in sandwich composite materials. In this study, the effects of cell design parameters, such as cell geometry (honeycomb and auxetic) and cell size (cell thickness and width), are examined on acrylonitrile butadiene styrene (ABS) core materials produced using fusion deposition modeling (FDM). They are produced as a result of the epoxy bonding of carbon epoxy prepreg composite materials to the surfaces of core materials.

View Article and Find Full Text PDF

Boundary Lubrication with Adsorbed Anionic Surfactant Bilayers in Hard Water.

Langmuir

January 2025

R&D - Analytical Science Research, Kao Corporation, 1334 minato, Wakayama, Wakayama 640-8580, Japan.

The adsorption behavior of an anionic surfactant, hydroxy alkane sulfonate with an alkyl chain length of 18 (C18HAS), from its hard water solution onto a mica surface and resulting lubrication properties were investigated. Because of the double chain-like chemical structure and aggregation behavior, C18HAS formed vesicles in hard water, which adsorbed onto a negatively charged mica surface via cation (Ca) bridging and then transformed into a bilayer film. The number of bilayers formed on the surface was evaluated by force curve measurements using an atomic force microscope (AFM), and the results showed a time-dependent increase of the number of adsorbed bilayers.

View Article and Find Full Text PDF

Geometrically modulated contact forces enable hula hoop levitation.

Proc Natl Acad Sci U S A

January 2025

Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, Department of Mathematics, New York University, New York, NY 10012.

Mechanical systems with moving points of contact-including rolling, sliding, and impacts-are common in engineering applications and everyday experiences. The challenges in analyzing such systems are compounded when an object dynamically explores the complex surface shape of a moving structure, as arises in familiar but poorly understood contexts such as hula hooping. We study this activity as a unique form of mechanical levitation against gravity and identify the conditions required for the stable suspension of an object rolling around a gyrating body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!