Analysis of Inhibitor Binding Combined with Reactivity Studies to Discover the Potentially Inhibiting Phytochemicals Targeting Chikungunya Viral Replication.

Curr Drug Discov Technol

National Center of Artificial Intelligence, Punjab University College of Information Technology, University of the Punjab, Lahore, Pakistan.

Published: December 2021

Background: Chikungunya fever is a challenging threat to human health in various parts of the world nowadays. Many attempts have been made for developing an effective drug against this viral disease and no effective antiviral treatment has been developed to control the spread of the Chikungunya virus (CHIKV) in humans.

Objective: This research is aimed at the discovery of potential inhibitors against this virus by employing computational techniques to study the interactions between non-structural proteins of Chikungunya virus and phytochemicals from plants.

Methods: Four non-structural proteins were docked with 2035 phytochemicals from various plants. The ligands having binding energies ≥ -8.0 kcal/mol were considered as potential inhibitors for these proteins. ADMET studies were also performed to analyze different pharmacological properties of these docked compounds and to further analyze the reactivity of these phytochemicals against CHIKV, DFT analysis was carried out based on HOMO and LUMO energies.

Results: By analyzing the binding energies, Ki, ADMET properties and band energy gaps, it was observed that 13 phytochemicals passed all the criteria to be a potent inhibitor against CHIKV in humans.

Conclusion: A total of 13 phytochemicals were identified as potent inhibiting candidates, which can be used against the Chikungunya virus.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570163817666200312102659DOI Listing

Publication Analysis

Top Keywords

chikungunya virus
12
potential inhibitors
8
non-structural proteins
8
binding energies
8
phytochemicals
6
chikungunya
5
analysis inhibitor
4
inhibitor binding
4
binding combined
4
combined reactivity
4

Similar Publications

The Chikungunya virus (CHIKV) is a mosquito-borne virus with a long history of recurring epidemics transmitted through mosquitoes. The rapid spread of CHIKV has intensified the need for potent vaccines. Escherichia coli (), a vital part of human gut microbiota, is utilized in recombinant DNA technology for cloning.

View Article and Find Full Text PDF

Blood pressure (BP) is a dynamic measure that is frequently discussed in static terms. There exist many limitations in current documentation systems whereby documented BP values may not be reflective of the dynamic variability of BP. This study used an observational, prospective, non-randomized study design to examine the variability in BP response during intravenous vasoactive medication administration in an intensive care unit setting.

View Article and Find Full Text PDF

Background: Arboviruses, including Dengue (DENV), Zika, and chikungunya, cause recurrent outbreaks of varying intensity in tropical countries. This study aimed to investigate other arboviruses, including Zika and chikungunya, in patients clinically suspected of Dengue and to characterize the circulating Dengue serotypes and genotypes in Northern Vietnam from 2020 to 2022. To date, information on this topic in the region has been limited.

View Article and Find Full Text PDF

Research progress of mosquito-borne virus mRNA vaccines.

Mol Ther Methods Clin Dev

March 2025

Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.

In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus.

View Article and Find Full Text PDF

Background: Human activities, such as urbanization and climate change, have facilitated the spread of arbovirus-carrying vectors, disproportionately affecting vulnerable traditional Indigenous communities.

Objective: To explore the relationships between subclinical myocardial dysfunction, assessed by global longitudinal strain (GLS), and comprehensive arbovirus serology in an Indigenous population, while also describing the serological and epidemiological profile of dengue, chikungunya, and Zika viruses.

Methods: This ancillary study is part of the first phase (2016-2017) of the Project of Atherosclerosis among Indigenous Populations (PAI), a cross-sectional study involving participants from two Indigenous communities with different degrees of urbanization and a highly urbanized city in Northeast Brazil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!