The reuse of rubber in concrete results in two major opposing effects: an enhancement in durability and a reduction in mechanical strength. In order to strengthen the mechanical properties of rubber concrete, steel fibers were added in this research. The compressive strength, the four-point bending strength, the mass loss rate, and the relative dynamic elastic modulus of steel fiber reinforced rubber concrete, subjected to cyclic freezing and thawing, were tested. The effects of the content of steel fibers on the freeze-thaw resistance are discussed. The microstructure damage was captured and analyzed by Industrial Computed Tomography (ICT) scanning. Results show that the addition of 2.0% steel fibers can increase the compressive strength of rubber concrete by 26.6% if there is no freeze-thaw effect, but the strengthening effect disappears when subjected to cyclic freeze-thaw. The enhancement of steel fibers on the four-point bending strength is effective under cyclic freeze-thaw. The effect of steel fibers is positive on the mass loss rate but negative on the relative dynamic elastic modulus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085194 | PMC |
http://dx.doi.org/10.3390/ma13051260 | DOI Listing |
Low Carbon Mater Green Constr
December 2024
Faculty of Technology, Fiber and Particle Engineering Research Unit, University of Oulu, PO Box 4300, 90014 Oulu, Finland.
Unlabelled: This study explores the use of Electric Arc Furnace (EAF) slag as a sustainable alternative raw material in cement clinker production. The research demonstrates the synthesis of ferrite-rich clinker using EAF slag, achieving a clinker composition of 47% alite, 32% ferrite, and 20% belite while replacing 20% of clinker raw materials i.e.
View Article and Find Full Text PDFSci Rep
December 2024
College of Civil and Architectural Engineering, Taizhou University, Taizhou, 318000, China.
To improve the toughness and strength of ceramsite concrete, this study employed three different types of fibers to enhance its performance. It prepared 8 sets of specimens, conducted stress-strain curve and static strength tests, and calculated various performance parameters. Through analysis of the economic performance and failure modes, it is found that high-toughness polypropylene fibers and steel fibers significantly enhanced both the strength and toughness of ceramsite concrete, while carbon fibers, although capable of increasing strength, do not improve toughness.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL, 33146, USA.
Reinforced concrete (RC) slabs are widely used in modern building structures due to their superior properties and ease of construction. However, their mechanical properties are limited by their punching shear strength in the connection region with the columns. Researchers have attempted to add steel reinforcement in the form of studs and randomly distributed fibers to concrete slabs to improve the punching strength.
View Article and Find Full Text PDFResearch (Wash D C)
December 2024
School of Materials Science and Engineering, Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing, China.
Concrete is the most widely used and highest-volume basic material in the word today. Enhancing its toughness, including tensile strength and deformation resistance, can boost the structural load-bearing capacity, minimize cracking, and decrease the amount of concrete and steel required in engineering projects. These advancements are crucial for the safety, durability, energy efficiency, and emission reduction of structural engineering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!