Cardiovascular diseases (CVD) compromises a group of heart and blood vessels disorders with high impact on human health and wellbeing. Curcumin (CUR) have demonstrated beneficial effects on these group of diseases that represent a global burden with a prevalence that continues increasing progressively. Pre- and clinical studies have demonstrated the CUR effects in CVD through its anti-hypercholesterolemic and anti-atherosclerotic effects and its protective properties against cardiac ischemia and reperfusion. However, the CUR therapeutic limitation is its bioavailability. New CUR nanomedicine formulations are developed to solve this problem. The present article aims to discuss different studies and approaches looking into the promising role of nanotechnology-based drug delivery systems to deliver CUR and its derivatives in CVD treatment, with an emphasis on their formulation properties, experimental evidence, bioactivity, as well as challenges and opportunities in developing these systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7141226PMC
http://dx.doi.org/10.3390/jcm9030746DOI Listing

Publication Analysis

Top Keywords

nanomedicine formulations
8
cardiovascular diseases
8
cur
5
therapeutic applications
4
applications curcumin
4
curcumin nanomedicine
4
formulations cardiovascular
4
diseases cardiovascular
4
diseases cvd
4
cvd compromises
4

Similar Publications

Objective: This study focuses on the development and evaluation of nanostructured lipid carriers (NLCs) loaded with aloperine as a potential therapeutic approach for the treatment of pulmonary arterial hypertension.

Methods: The NLCs were designed to enhance the solubility, stability, and bioavailability of aloperine, a compound with vasodilatory and anti-inflammatory properties. Through a series of experiments including single-factor experimentation, transmission electron microscopy, high-performance liquid chromatography, in vivo pharmacokinetics, and tissue distribution studies, we assessed the physicochemical properties, drug release profiles, and in vitro and in vivo performance of this novel nanocarrier.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

: The demand for a safe compound for hyperpigmentation is continuously increasing. Bioactive compounds such as thymoquinone (TQ) and ascorbic acid (AA) induce inhibition of melanogenesis with a high safety profile. The aim of this study was to design and evaluate spanlastics gel loaded with bioactive agents, TQ and AA, for the management of hyperpigmentation.

View Article and Find Full Text PDF

Liposomal Formulation of Hydroxychloroquine Can Inhibit Autophagy In Vivo.

Pharmaceutics

December 2024

Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada.

Preclinical studies have shown that the anti-malarial drug hydroxychloroquine (HCQ) improves the anti-cancer effects of various therapeutic agents by impairing autophagy. These findings are difficult to translate in vivo as reaching an effective HCQ concentration at the tumor site for extended times is challenging. Previously, we found that free HCQ in combination with gefitinib (Iressa, ZD1839) significantly reduced tumor volume in immunocompromised mice bearing gefitinib-resistant JIMT-1 breast cancer xenografts.

View Article and Find Full Text PDF

The emergence of multidrug-resistant bacteria presents a significant global health threat. Liposomal antibiotics have shown a potential to improve antibiotic delivery and efficacy. This study aimed to develop liposomes encapsulating tobramycin (TOB) and methylglyoxal (MGO) to enhance TOB activity while reducing bacterial adhesion and biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!