Global acquisition of atmospheric wind profiles using a spaceborne direct-detection Doppler wind lidar is being accomplished following the launch of European Space Agency's Aeolus mission. One key part of the instrument is a single-frequency, ultraviolet laser that emits nanosecond pulses into the atmosphere. High output energy and frequency stability ensure a sufficient signal-to-noise ratio of the backscatter return and an accurate determination of the Doppler frequency shift induced by the wind. This Letter discusses the design of the laser transmitter for the first Doppler wind lidar in space and its performance during the first year of the Aeolus mission, providing valuable insights for upcoming space lidar missions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.387728DOI Listing

Publication Analysis

Top Keywords

wind lidar
12
ultraviolet laser
8
doppler wind
8
aeolus mission
8
wind
5
high-power frequency-stable
4
frequency-stable ultraviolet
4
laser performance
4
space
4
performance space
4

Similar Publications

Forest dynamics where typhoon winds blow.

New Phytol

December 2024

Conservation Research Institute and Department of Plant Sciences, University of Cambridge, Downing St., Cambridge, CB2 3EA, UK.

Tropical cyclones (TCs) sporadically cause extensive damage to forests. However, little is known about how TCs affect forest dynamics in mountainous terrain, due to difficulties in modelling wind flows and quantifying structural changes. Typhoon Mangkhut (2018) was the strongest TC to strike Hong Kong in over 40 yr, with gusts > 250 km h.

View Article and Find Full Text PDF

Spaceborne resonance fluorescence Doppler lidar uses metal atoms as tracers to detect atmospheric temperature, wind speed, and metal atom number density from the top of the mesosphere to the bottom of the thermosphere in the global atmosphere. This study proposes a concept of spaceborne Fe resonance fluorescence Doppler lidar (spaceborne Fe lidar). To theoretically analyze the feasibility of this technology, key parameters of the lidar were designed.

View Article and Find Full Text PDF

Industrial Dry Heat Island and Dispersion of Air Pollutants Induced by Large Coal-Fired Activities.

Environ Sci Technol

November 2024

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

Article Synopsis
  • The study examines how coal-fired plants influence local environments, particularly by creating a hot and dry "heat island" effect that is 3-10 °C warmer and 30%-60% drier compared to surrounding areas.
  • Measurements taken from advanced lidar technology in a coal-fired steel plant in Yuncheng, China, reveal that this heat island can affect the dispersion of pollutants by forming a mushroom-shaped cloud due to upward transport of factory emissions.
  • The research indicates that pollutants from this cloud can be pushed down to ground level after sunrise, contributing to pollution peaks in urban areas and signaling a need for better air quality models that consider heat emissions from coal-fired sources.
View Article and Find Full Text PDF
Article Synopsis
  • - A new dual-wavelength lidar system, called Wind Flux 3000, can independently monitor particulate matter (PM) transport flux and wind conditions, combining both aerosol and wind measurements effectively.
  • - The system provides key data including the particulate extinction coefficient, wind speed, direction, and other atmospheric parameters, which helps in understanding the relationship between PM concentration and environmental factors.
  • - Utilizing advanced ensemble learning techniques, the study developed models that outperformed traditional methods in predicting PM concentration, achieving strong correlations and reduced errors in test predictions.
View Article and Find Full Text PDF

This study proposes what we believe to be a novel high-spectral-resolution three-frequency Rayleigh lidar for simultaneously measuring middle atmosphere temperature and wind. The temperature and wind could be retrieved without assuming an external reference temperature, as typical for a traditional Rayleigh Doppler lidar. Adopting a similar idea used in sodium temperature/wind lidar, this system alternatively emits laser pulses at three frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!