AI Article Synopsis

  • The study discusses coherent time-to-frequency mapping in frequency shifting loops (FSLs).
  • When a short temporal signal enters the FSL, it produces a periodic output in the optical spectrum that reflects the input's temporal properties in the frequency domain.
  • They demonstrate an experimental setup that allows for real-time measurement of fast RF signals, using a detection system significantly slower than the input signal.

Article Abstract

We report coherent time-to-frequency mapping in frequency shifting loops (FSLs). We show that when seeded by a temporal signal shorter than the inverse of the frequency shift per roundtrip, the optical spectrum at the FSL output consists of a periodic replica of the input waveform, whose temporal amplitude and phase profiles are mapped into the frequency domain. We provide an experimental demonstration of this phenomenon and show how this simple setup enables real-time measurement of fast non-repetitive input RF signals with a detection chain two orders of magnitude slower than the input signal.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.385000DOI Listing

Publication Analysis

Top Keywords

real-time measurement
8
frequency shifting
8
shifting loops
8
measurement complex
4
complex fast
4
fast signals
4
signals bandwidth
4
bandwidth compression
4
frequency
4
compression frequency
4

Similar Publications

Malnutrition in the early days of life is a global public health concern that affects children's growth. It results from a variety of factors, including pathogenic infections. Enterocytozoon bieneusi is a microsporidian parasite that can cause diarrhea and malnutrition in children.

View Article and Find Full Text PDF

Objective: Aim: Testing Cordia myxa extract on colon cancer cell line and caspase-3 gene and COX-2 protein expression.

Patients And Methods: Materials and Methods: This study used Cordia myxa ethanolic extract at various dosages on SW480 cells. Cell proliferation was measured using MTT, also examined effect of Cordia myxa extract on caspase-3 gene expression using quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Measurement and spectral analysis of medical shock wave parameters based on flexible PVDF sensors.

Phys Eng Sci Med

January 2025

School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100191, China.

Extracorporeal shock wave therapy (ESWT) achieves its therapeutic purpose mainly through the biological effects produced by the interaction of shock waves with tissues, and the accurate measurement and calculation of the mechanical parameters of shock waves in tissues are of great significance in formulating the therapeutic strategy and evaluating the therapeutic effect. This study utilizes the approach of implanting flexible polyvinylidene fluoride (PVDF) vibration sensors inside the tissue-mimicking phantom of various thicknesses to capture waveforms at different depths during the impact process in real time. Parameters including positive and negative pressure changes (P, P), pulse wave rise time ([Formula: see text]), and energy flux density (EFD) are calculated, and frequency spectrum analysis of the waveforms is conducted.

View Article and Find Full Text PDF

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

View Article and Find Full Text PDF

MR imaging of proton beam-induced oxygen depletion.

Med Phys

January 2025

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Background: Previous studies have shown that in-beam magnetic resonance imaging (MRI) can be used to visualize a proton beam during the irradiation of liquid-filled phantoms. The beam energy- and current-dependent local image contrast observed in water was identified to be predominantly caused by beam-induced buoyant convection and associated flow effects. Besides this flow dependency, the MR signal change was found to be characterized by a change in the relaxation time of water, hinting at a radiochemical contribution, which was hypothesized to lie in oxygen depletion-evoked relaxation time lengthening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!