The production of graphene using impinging jet exfoliation in a binary system of CO and N-methyl pyrrolidone.

Nanotechnology

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.

Published: April 2020

High quality and high quantity few-layer graphene was successfully prepared using a new impinging jet method. Natural graphite flakes were first agitated in N-methyl pyrrolidone (NMP) with the assistance of supercritical CO, then the half-exfoliated graphite was further stripped using the shear stress derived from the impinging jets. After the energy conversion and stress analysis of the graphite particles during the whole exfoliation process, it was revealed that the size of the target mesh, the distance between the nozzle and the target, the decompression rate, and the size of the raw materials had a significant influence on the exfoliation process. Additionally, a microscopic view of the exfoliation and dispersion mechanism of graphene in the CO-NMP system was investigated using molecular dynamics simulation, and CO was found to be beneficial for the penetration of NMP into the graphite sheets. Finally, the concentration and quality characteristics of the prepared graphene were characterized using ultraviolet-visible spectroscopy, transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The maximum concentration was as high as 0.689 mg ml, the thickness of 68% of the product was less than 2.5 nm, and the lateral dimension was from 0.5 to 3.0 μm. These results indicate that this impinging jet method is promising for large-scale industrial production.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab7f7cDOI Listing

Publication Analysis

Top Keywords

impinging jet
12
n-methyl pyrrolidone
8
jet method
8
exfoliation process
8
production graphene
4
impinging
4
graphene impinging
4
exfoliation
4
jet exfoliation
4
exfoliation binary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!