Uranium compounds are used as fissile materials in nuclear reactors. In present day reactors the most used nuclear fuel is uranium dioxide, but in generation-IV reactors other compounds are also being considered, such as uranium carbide and uranium mononitride. Upon possible accidents where the coolant would not circulate or be lost the core of the reactor would reach very high temperatures, and therefore it is essential to understand the behaviour of the nuclear fuel under such conditions for proper risk assessment. We consider here molten metallic uranium at several temperatures ranging from 1455 to 2050 K. Even though metallic uranium is not a candidate for nuclear fuel it could nevertheless be produced due to the thermochemical instability of uranium nitride at high temperatures. We use first principles techniques to analyse the behaviour of this system and obtain basic structural and dynamic properties, as well as some thermodynamic and transport properties, including atomic diffusion and viscosity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ab7f6f | DOI Listing |
Sci Rep
January 2025
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.
In this paper, a comprehensive energy management framework for microgrids that incorporates price-based demand response programs (DRPs) and leverages an advanced optimization method-Greedy Rat Swarm Optimizer (GRSO) is proposed. The primary objective is to minimize the generation cost and environmental impact of microgrid systems by effectively scheduling distributed energy resources (DERs), including renewable energy sources (RES) such as solar and wind, alongside fossil-fuel-based generators. Four distinct demand response models-exponential, hyperbolic, logarithmic, and critical peak pricing (CPP)-are developed, each reflecting a different price elasticity of demand.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China.
Biocrude derived from biomass via hydrothermal liquefaction (HTL) is a sustainable substitute for petroleum to obtain energy and biochemicals. Upgrading biocrude inevitably faces the trade-off between consuming large amounts of hydrogen via hydrotreating and high yield of solid residue without additional hydrogen. In this work, we report a non-hydrogenated refinery paradigm for nearly complete valorization (~90%), via co-generating green coal and bio-lubricant.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
The fundamental hydrolysis behavior of tetravalent actinide cations (An) with a high charge is crucial for understanding their solution chemistry, particularly in nuclear fuel reprocessing and environmental behavior. Using Th as a reference of the An series, this work employed both the periodic model and the cluster model to calculate the first hydrolysis reaction constant (p) of the Th aqua ion and conducted a detailed evaluation of these approaches. In the periodic model, molecular dynamics (AIMD) simulations of Th in the explicit solvation environment are conducted, using metadynamics and constrained molecular dynamics to calculate p values.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
Crystalline porous materials, known for their ordered structures, hold promise for efficient hydroxide conductivity in alkaline fuel cells with limited ionic densities. However, the rigid cross-linking of porous materials precludes their processing into membranes, while composite membranes diminish materials' conductivity advantage due to the interrupted phases. Here, we report a self-standing three-dimensional covalent organic framework (3D COF) membrane with efficient OH-transport through its interconnected 3D ionic nanochannels.
View Article and Find Full Text PDFLangmuir
January 2025
Applied Systems Analysis & Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
Salt formations have been explored for the permanent isolation of spent nuclear fuel based on their high thermal conductivity, self-healing nature, and low hydraulic permeability to brine flow. Vacancy defect concentrations in salt complicate fracture mechanics not driven by dislocation dynamics and can influence the resulting surface structure. Classical molecular dynamic simulations were used to simulate tensile testing of salt crystals (halite) with vacancy defect concentrations of up to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!