A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hausmannite as potential As(V) filter. Macroscopic and spectroscopic study of As(V) adsorption and desorption by citric acid. | LitMetric

Arsenic (As) is a toxic element that leads the list of human health threats and is one of the priority contaminants in soil and water. In order to remove As(V) and/or reduce its mobility, filters and amendments with high affinity for As(V) adsorption are used in drinking water treatment or directly applied to the soil, thereby promoting its immobilization. Hausmannite and hematite were compared by in-situ Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopy and batch experiments for evaluating As(V) adsorption and sequential desorption by citrate. The pH and contact time were used as variables. Hausmanite adsorbed more As(V) than hematite. As(V) was adsorbed on the mineral surface of simultaneously inner- and outer-sphere species. Inner-sphere bidentate complex form preferentially at high pH, early adsorption time and low surface loading, while the monodentate species should be responsible to increase total As(V) adsorption at low pH, later adsorption kinetics and higher As(V) surface loading. Citrate was effective in causing As(V) desorption at higher citric acid concentrations and higher pH values. After a long time of incubation, the neogenesis of a manganite by hausmnannite oxidation was observed. Concomitantly, less As(V) was desorbed by citrate desorption, even in the presence of high citric acid concentrations. Hausmannite was an efficient mineral for As(V) removal and immobilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.114196DOI Listing

Publication Analysis

Top Keywords

asv adsorption
16
asv
12
citric acid
12
surface loading
8
acid concentrations
8
adsorption
6
hausmannite potential
4
potential asv
4
asv filter
4
filter macroscopic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!