The demand for high quality recycled polymers in the European plastic industry is on the increase, likely due to the EU's Plastic Strategy intended to implement the circular economy model in this sector. The problem is that there is not enough recycled plastic in the market. In terms of volume, post-consumer plastic waste could be key to meet the current and future demand. Nevertheless, a high level of contamination originated during the product's life cycle restricts its use. The first step to change this must be identifying the undesired substances in post-consumer plastics and performing an effective risk assessment. The acquired knowledge will be fundamental for the development of innovative decontamination technologies. In this study, 134 substances including volatile and semi-volatile compounds have been identified in recycled LDPE and HDPE from domestic waste. Headspace and solvent extraction followed by GC/MS were used. The possible origin of each substance was studied. The main groups were additives, polymer and additives breakdown products, and contamination from external sources. The results suggest that recycled LDPE contains a broader number of additives and their degradation products. Some of them may cause safety concerns if reused in higher added value applications. Regarding recycled HDPE, the contaminants from the use phase are predominant creating problems such as intense odors. To reduce the number of undesired substances, it is proposed to narrow the variety of additives used in plastic manufacturing and to opt for separate waste collection systems to prevent cross-contamination with organic waste.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126373 | DOI Listing |
JMIR Mhealth Uhealth
January 2025
Department of Learning and Workforce Development, The Netherlands Organisation for Applied Scientific Research, Soesterberg, Netherlands.
Background: Wearable sensor technologies, often referred to as "wearables," have seen a rapid rise in consumer interest in recent years. Initially often seen as "activity trackers," wearables have gradually expanded to also estimate sleep, stress, and physiological recovery. In occupational settings, there is a growing interest in applying this technology to promote health and well-being, especially in professions with highly demanding working conditions such as first responders.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Introduction: The COVID-19 pandemic forced leaders and employees in health care services to take difficult decisions to manage risks associated with employee health and the organizations' functioning. This study aims to identify the changes in employee working routines, job demands, and job resources within Swedish maternal healthcare during the COVID-19 pandemic, and how these changes affected workload and health.
Methods: Data were derived from the longitudinal COPE Staff study involving midwives and physicians within maternal healthcare.
BMC Med Educ
January 2025
Department of Anatomy, Clinical Sciences Building, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308323, Singapore.
Study Objective: Student-centered learning and unconventional teaching modalities are gaining popularity in medical education. One notable approach involves engaging students in producing creative projects to complement the learning of preclinical topics. A systematic review was conducted to characterize the impact of creative project-based learning on metacognition and knowledge gains in medical students.
View Article and Find Full Text PDFSci Rep
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
With the increasing demand on high-density integration and better performance of micro-nano optoelectronic devices, the operation temperatures are expected to significantly increase under some extreme conditions, posing a risk of degradation to metal-based micro-/nano-structured metasurfaces due to their low tolerance to high temperature. Therefore, it is urgent to find new materials with high-conductivity and excellent high-temperature resistance to replace traditional micro-nano metal structures. Herein, we have proposed and fabricated a thermally stable graphene assembly film (GAF), which is calcined at ultra-high temperature (~ 3000 ℃) during the reduction of graphite oxide (GO).
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
Objectives: This article aims to evaluate the use and effects of an artificial intelligence system supporting a critical diagnostic task during radiology resident training, addressing a research gap in this field.
Materials And Methods: We involved eight residents evaluating 150 CXRs in three scenarios: no AI, on-demand AI, and integrated-AI. The considered task was the assessment of a multi-regional severity score of lung compromise in patients affected by COVID-19.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!